O SINCLINAL PALEOZÓICO DE ESPOSENDE (PORTO)-SEQUEROS (SALAMANCA): O TROÇO ENTRE A MAROFA E O SÁTÃO (PORTUGAL CENTRAL)

POR C. A. Regêncio * e M. Portugal *

Confirma-se a ocorrência do Ordovícico ao longo de um troço com cerca de 30 Km, entre a Marofa e Antas (Portugal Central), pelo que se completa o arco definido por este sinclinal, que para NW vai até Esposende (Porto) e para SE até Sequeros (Salamanca). No troço agora reconhecido, e onde o Ordovícico e alguns ortogneisses só agora foram distinguidos do Complexo Xisto-Grauváguico, o Ordovícico apresenta-se em isosinclinal com andamento WSW-ENE; este segmento faz a ligação do troço Esposende-Sátão, com andamento NW-SE, ao troço Marofa-Ahigal de los Aceiteiros, com andamento W-E. Importa referir que a torção brusca do sinclinal acontece para leste do alinhamento Sezures-Antas. Aos quartzitos de base, com espessura total inferior a 25m, sucedem-se micaxistos e filádios; é rara a presença de xistos grafitosos. O Ordovícico sobrepõe-se com discordância ao Complexo Xisto-Grauváquico que aqui está com fácies de pelitos e grauvaques, em ritmos centimétricos, com microconglomerados para NE. A reconstituição do sinclinal Ordovícico é fácil nos segmentos com ortogneisses e granitoides gneissicos que para leste encontram equivalentes nos ortogneisses de Traguntia-Juzbado (Salamanca). Demonstra-se que os ortogneisses resultam da milonitização dos granitoides pós-Ordovícicos, 1) sin-cinemáticos diferenciados desde tonalitos até granitos, cuja fábrica foi impressa durante uma primeira fase hercínica (22 340 M.A.) e retomada numa segunda fase (22 310 M.A.) e 2) tardi-cinemáticos F2, diferenciados desde tonalitos até granitos, e em alguns casos com recristalização pós-tectónica. O seguimento é bastante menos claro onde

^{*} Centro de Geociências da Universidade de Coimbra. INIC.

intruíram os granitos hercínicos pós-tectónicos-nestes, os quartzitos dos encraves ordovícicos (pendant-roof com quartzitos e micaxistos) passam lateralmente a «filões de quartzo» enquanto que os micaxistos são totalmente assimilados. No troço agora estudado, o andamento do sinclinal é condicionado pela zona cisalhada Penalva do Castelo-Juzbado, de idade intra-hercínica. Assinala-se ainda que a zona cisalhada condiciona, depois de uma fase tardia de distensão hercínica, a intrusão de granitos porfiroides pós-tectónicos que a cicatrizam. Evidencia-se uma família de falhas, com tracção eoalpina, com andamento N15E, que foram as estruturas preferenciais para a ascensão dos magmas basálticos de idade triásica.

ABSTRACT

It is shown that the Ordovician can be followed all along the 30Km long segment between Marofa and Antas, thereby closing the «arch» defined by this Esposende-Sequeros paleozoic syncline. It was worked out the distintion of ultramylonitic trending Hercynian or-thogneisses and sheared isoclinally folded Ordovician quartzites and schists from the surrounding flisch type metasediments of the «Complexo Xisto-Grauváquico». The Ordovician syncline is made of basal quartzites, whose thickness does not exceed 25 meters, in any of the limbs, overlayered by micaschists and phylites with very scarce graphitic slates. To trace out the Ordovician quartzites and schists when they occur within the sin-orogenic gneissose granites and orthogneisses is far better easy than when the post-tectonic granitoides have intruded. Here the armorican quartzites can only be found as «quartz vein type» outcrops with very scarce relics of micaschists.

It is shown that the orthogneisses are to be derived either from sin F_1 (ca. 340 m.y.) granitoides, or else from Late- F_2 (ca. 310 m.y.) granitoides. Their tonalitic to leucogranitic antecedents were emplaced along a 4 to 6 Km wide left shear zone. Both the radiometric ages and the S and C foliations demonstrate that some of the F_1 -orthogneisses were reactivated in the second phase (F_2). One also finds evidences of post-tectonic recrystalization to be connected with the large scale granitic emplacement, dated of ca. 285 m.y. The shear zone was kept active during the lapse 340-310 m.y., and it remained as a lineament fault system that controlled the intrusion of post-tectonic granites.

The rather well represented left strike-slip faults trending N15E are shown to have evolved from early alpine tension faults which were the preferred structures for the ascent of Lower Triasic alkaline basalts to lamprophyres.

1. INTRODUÇÃO

O Sinclinal Paleozóico de Esposende (Porto)-Sequeros (Salamanca) compreende vários segmentos com direcções diferentes e interrompido por várias formações granitoides hercínicas. Em Portugal estava representado pelo afloramento desde Esposende até Sátão, na região de Matela-Maceira e pelo afloramento da Serra da Marofa. Nestes três segmentos os andamentos são, respectivamente, NW-SE, W-E e WSW-ENE; retoma a direcção NW-SE em Espanha. É em Sezures-Antas (Fornos de Algodres) que se exprime a grande torção correspondente à inflexão entre os dois primeiros segmentos.

Importa referir que, no troço agora reconhecido (Fig. 1), foi possível diferenciar ortogneisses hercínicos e quartzitos e metapelitos do Ordovícico em domínios até agora cartografados como do Complexo Xisto-Grauváquico.

2. ORDOVÍCICO ENTRE A SERRA DA MAROFA E O SÁTÃO

No troço agora reconhecido (Fig. 1) assinala-se a ocorrência de Ordovícico representado pelos quartzitos armoricanos (com espessura máxima de 25m), micaxistos e filádios, sendo rara a ocorrência de xistos grafitosos.

Na região de S. Pedro-Freixial só estava referenciado um dos flancos do Sinclinal Ordovícico (flanco N); assinala-se agora o flanco sul para oeste das minas de Massueime.

Desde Freixial até Vale de Mouro-Tamanhos (Trancoso) nota-se a ocorrência de xistos grafitosos, verificando-se nesta zona o afloramento mais espesso dos quartzitos, embora parte deles estejam recristalizados como quartzo.

Desde Tamanhos até Chafariz do Vento o afloramento do Ordovícico chega a reduzir-se a uma faixa com 400m de largura e os quartzitos por efeito de cizalhamento sofrem profunda milonitização pelo que se torna difícil a sua diferenciação dos quartzo-pelitos.

Na provoação de Freches há afloramentos de bancadas de quartzito com cerca de 5m de espessura, cartografadas até agora como filões de quartzo.

Assinale-se que a recristalização do quartzito, por vezes bastante intensa, é originada pela intrusão de granitoides sin e pós-tectónicos. Em alguns domínios os xistos do Ordovícico foram totalmente assimilados pelos granitoides pelo que os quartzitos «passam lateralmente a filões de quartzo». Esta recristalização é bem visível na pedreira do Seixo, sita junto à E.N.-Celorico da Beira-Chafariz do Vento onde

FIG. 1.—Carta geológica da região Marofa-Pinhel-Trancoso-Maceira.

636

aflora grande concentração de biotite e quartzo em «filão». Este quartzo e biotite são resultantes da recristalização do quartzito e dos micaxistos pelo granito encaixante. A biotite foi agora datada pelo método K-Ar tendo-se obtido a idade de 290 ± 5 M.A. que corresponde à idade do granito encaixante.

3. ORTOGNEISSES

Na região em estudo (Fig. 1) também se individualizaram ortogneisses que podemos agrupar em:

- ortogneisses derivados de granitoides sin F1

- ortogneisses derivados de granitoides sin F2

Em alguns pontos os ortogneisses sofreram recristalização sequente:

1) assinalam-se ortogneisses derivados de granitoides sin F_1 que são retomados em F_2 e 2) ortogneisses derivados de granitoides sin F_1 ou sin F_2 que são retomados por recristalização pós-tectónica. Esta diferenciação foi possível pelo estudo microscópico das amostras e pela datação das micas pelo método K-Ar.

3.1. Ortogneisses derivados de granitoides sin F1 (Pala)

3.1.1. São derivados de tonalitos e granitos tardi-F1 que induzem metamorfismo de contacto com cordierite++silimanite (andaluzite). A composição mineralógica 30% de quartzo + 15% feldspato potássico + 35% plagioclase + 15% biotite + 5% moscovite, opacos.

A sua idade radiométrica é da ordem dos 340±6 M.A. (idade modelo) como se pode verificar no Quadro I e a idade calculada pelo método das isócronas ⁴⁰Ar/³⁶Ar vs. ⁴⁰K/³⁶Ar deu 344±2 M.A. (Fig. 2B). A Figura 2A esquematiza a estrutura da amostra 171-193, notando-se a foliação S, e as superfícies C correlativas do cisalhamento semi-dúctil.

3.1.2. Alguns ortogneisses sin F_1 são retomados na fase 2, notando-se um acréscimo grande de feldspato potássico, aparecimento de cordierite e silimanite (composição mineralógica: quarzo 30% + feldspato potássico 35% + plagioclase 15% + cordierite 10% + 10%

Amostra	Spike	Pêso (gramas)	K (%)	⁴⁰ Ar _{atm} (%)	⁴⁰ Ar _{rad} ccSTP/gr×10 ⁻⁴	Idađe M.A.	Local
171-96	8679,70A	0,11844	7 (00)	1,343	1,1068422	326±6	M=282 575
Biot	221,40B	0,14150	7,6996	2,398	1,0851331	339±6	P = 422 925
171-192	8730,87A	0,14149	7 41 43	1,403	1,0953215	333 ± 7	M=283 525
Biot	262,20B	0,15309	7,4143	2,100	1,0541007	345 ± 7	P = 422 975
171-193	8320,68A	0,10069	7 5031	0,422	1,1063168	338 ± 7	M=284 375
Biot	8767,15A	0,13560	7,5831	2,012	1,0984032	334 ± 6	P = 422 600
171-193A	8415,13A	0,12174	7 5501	0,953	1,1023199	345 ± 6	
Biot	76,00B	0,14237	1,5591	1,730	1,1036918	329±7	Idem
171-403E	9404 EQ 4	8696,59A 0,11789	7 5447	446 0,799 1,1114284 3	1 11 1001		M=281 050
Biot	6090,39A		7,3440		333 ± 6	P =421 675	
171-401	282,60B	0,13560	7 7902	2,691	1,1293222	343 ± 6	M=283 100
Mosc	303,00B	0,13152	7,7803	4,862	1,1286413	343±6	P =423 500

QUADRO I ORTOGNEISSES DERIVADOS DE GRANITOIDES SIN-F₁

ł.

ldade K-Ar – Biot. 336±8 M.A.

Am. 170-8B/4/80

(Fig.3B)

FIGURA 3a

FIGURA 3b

Idade K-Ar - Biot. 309±6 M.A.

BIOTITES E MOSCOVITES DO ORTOGNEISSE DE PALA (PINHEL)

639

outros) e aumento de granularidade. A idade K-Ar determinada na moscovite para este grupo de rochas é da ordem dos 320 ± 6 M.A.-Quadro II. Destes ortogneisses apresentam-se os esquemas das estruturas correspondentes às amostras 170-S. Pedro (Fig. 4) e 171-102 (Fig. 5).

- 3.2. Ortogneisses derivados de granitoides sin F₂. Estes ortogneisses são derivados de tonalitos e granitos sin a tardi F₂. A deformação está esquematizada nas figuras 3A e 3B e, no Quadro III estão apresentados os valores obtidos na datação radiométrica K-Ar: 309±7 M.A.
- 3.3. Alguns dos ortogneisses derivados de granitoides sin F_1 e sin F_2 sofreram recristalização pós-tectónica. A idade radiométrica K-Ar destas amostras é de 283 ± 5 M.A. (Quadro IV), que corresponde à equivalente idade radiométrica dos granitos pós-tectónicos.

4. ZONA DE CISALHAMENTO

No troço que se assinala nesta nota, o sinclinal é condicionado por um cisalhamento semi-dúctil de andamento N70E de idade intrahercínica; as estruturas S, C e C' assinaladas nos ortogneisses (ver Figuras 2, 3, 4, 5) são-lhe correlativas. Se a fábrica primária dos granitoides sin F_1 e sin F_2 é marcada pela pervasiva orientação preferencial das biotites (S_1 e S_2) as estruturas C_1 e C_2 acompanhantes concordam com a natureza levógira da zona cisalhada.

Enquanto que fica demonstrado que na larga ($\simeq 4$ Km) banda cisalhada houve uma migração para N dos domínios favoráveis na intrusão das sequências dos granitoides pós-tectónicos, inmediatamente a N desta banda há ainda o aproveitamento da grande falha N70E.

5. ROCHAS BÁSICAS

A zona referenciada é cortada por numerosos filões de rochas básicas, de natureza fortemente alcalina e potássica; preenchem um sistema de falhas esquerdas de orientação N10-15E, que seriam de tracção eoalpina.

Com base nas datações radiométricas K-Ar de 13 amostras destas rochas básicas (rocha total e biotites) pode atribuir-se-lhes uma idade de 230 ± 10 M.A., isto é, da transição Pérmico-Triásica.

Quadro II ORTOGNEISSES DERIVADOS DE GRANITOIDES SIN-F ₁ RETOMADOS EM F ₂								
Amostra	Spike	Pêso (gramas)	K (%)	⁴⁰ Ar _{atm} (%)	⁴⁰ Ar _{rad} ccSTP/gr×10-4	Idade M.A.	Local	
171-109 Biot	102,40B	0,13691	6,8999	1,707	0,9617025	316±6	$M = 284\ 600$ $P = 422\ 700$	
171-194	8130,39A	0,09854	67658	1,394	0,8852003	316 ± 6	M=283 600	
Biot	80,00B	0,12040	0,7058	2,956	0,8783488	301 ± 6	P =422 300	
171-194A Biot	8103,00A	0,05248	7,2805	1,227	0,9064906	305 ± 8	Idem	
171-102A Mosc	507,00B	0,13326	8,0835	4,651	1,0981345	321±6	M=281 325 P=425 075	
171-102 Mosc	486,60B	0,12527	8,3930	3,858	1,1129130	313±6	Idem	
171-102	425,40B	0,12563	6,6623	1,768	0,8631212	305 ± 6	Idem	
Biot	445,80B	0,12379		1,887	0,8714708	309±7		
170-S. Pedro Mosc	22,89C	0,14190	6,8487	1,626	0,9235476	320±6	M=277 300 P=428 250	

÷

Amostra	Spike	Pêso (gramas)	K (%)	⁴⁰ Ar _{atm} (%)	⁴⁰ Ат _{rad} ccSTP/gr×10-4	Idade M.A.	Local
170-8A/4/80 Biot	364,20B	0,12936	7,2638	2,105	0,9476498	307±6	M=269 700 P=422 000
170-8B/4/80 Biot	384,60B	0,15145	7,2306	1,931	0,9376851	309±6	M=269 525 P=421 675

QUADRO III ORTOGNEISSES DERIVADOS DE GRANITOIDES SIN-F2

Quadro IV ORTOGNEISSES DERIVADOS DE GRANITOIDES SIN-F1 E SIN-F2 COM RECRISTALIZAÇÃO POS-TECTONICA

Amostra	Spike	Pêso (gramas)	K (%)	⁴⁰ Ar _{atm} (%)	⁴⁰ Ar _{rad} ccSTP/gr×10-4	Idađe M.A.	Local
170-540A Biot	814,84C	0,13103	6,6220	0,220	0,7858111	283±5	$M = 268 \ 900$ $P = 420 \ 750$
170-4A/7/79 Biot	831,73C	0,12603	6,2872	0,680	0,7446535	284±5	M=269 075 P=420 625
180-3 Biot	797,95C	0,12691	6,8045	0,292	0,7892156	280±5	M=256 150 P = 513 525

BIBLIOGRAFIA

- CÂNDIDO DE MEDEIROS, A. (1960): «Notas sobre a geologia da região de Trancoso». Revista Fac. Ciências de Lisboa, 2.ª Série, C, vol. IX, fac. 1.º, 89-109.
- JUNTA DE ENERGIA NUCLEAR (1968): Carta geotectónica da região das Beiras, 1/250.000.
- GARCIA DE FIGUEIROLA, L. C., e PARGA, R. (1968): «Sobre los ortogneises de Traguntia-Juzbado (Salamanca) y su significación tectónica». Acta Geológica Hispânica, tomo III, n.º 3, 69-72.
- SERVIÇOS GEOLÓGICOS DE PORTUGAL (1972): Carta geológica de Portugal, 1/500.000.
- TEIXEIRA, C.; PAULA SANTOS, J., e TEIXEIRA LOPES, J. (1958): «Reconhecimento Geológico da região entre Maceira e Ameais, a norte de Fornos de Algodres». *Revista Fac. Ciências de Lisboa*, 2.ª Série, C, vol. VI, 237-244.