The relation between transport provision and
accessibility: a mathematical perspective

Alan Hay *

It is generally recognised that accessibility from an area to transport
facilities is inversely related to the density of provision, a point which can
be demonstrated mathematically for regular networks (Hay, 1973, pp.
36-37; Melut and O’Sullivan, 1974; Evans, 1985), and had long before been
noted empirically for irregular networks (e. g. Jefferson 1929). This rela-
tionship holds true for linear fixed networks (e. g. roads) linear service net-
works (e. g. bus services) and for point facilities (e. g. air ports),

It is less widely recongnised that if, for a given area the costs of pro-
vision are linearly related to the density of provision the resulting
equation

¢ = -2 + bL 1.
L

(where C = total social cost of the system

L = level of provision

a and b are constants)
can be differentiated to yield a least total social cost level of provision
where

L = =2 2.
The cocfficient a in this equation reflects the number of trips made and
the costs ol moving to the network in a given time period while b reflects
the costs of providing network over the same period (including a sum for

servicing capital costs and maintenance). This derivation was used by
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Howe (1971) and subsequently by Rayner (1980) and Hay (1982) to spe-
cify regression relationships between network density and population va-
riables in developing countries and can be seen as a post hoc rationalisa-
tion of the resulis reported by Taalte, Morril and Gould (1963). Even if
the simplifying assumptions are relaxed the same basic [orms emerge
from the differentiation.

A second consequence of the density/accessibility relationship refers
to the provision of scheduled services (3. g. bus networks). If an operator
has a fixed capacity (vehicle/lkm/day) there is an inverse relation between
the density of services in space and the frequency of services in time (Bly
and Oldfield, 1974). For the user of those services this becomes an inserve
relationship between access costs and waiting times {because just as ac-
cess is inversely related to density so waiting times are inversely related
to frequency). If total user cost (U) is seen as related to these two
components

U ="+ vyL 3.
=ty

where x is a coelficient for the cost of access (per unit of distance) and y
is a coefficient for costs of waiting (per unit of time}, it too can be diffe-
rentiated to given an optimal network length where

L—\/X 4.

¥

Ii can be shown that this is achieved when access costs equal waiting
costs. Workman (1985) has shown that the same relation is true for a va-
riety of regular networks. Empirical studies have shown that these rela-
tions too hold in practice, though the variances in irregular networks are
naturally higher than those for regular networks.

The two arguments put forward above can be combined to establish
the optimal allocation of public service capacity to an area assuming that
the capacity so allocated will be used with the optimal trade off between
network density and service frequency for a uniformly distributed popu-
Iation. The first step is to derive the solution for optimal network length

(given capacity, T) as
L = \/ al 5.
b

If this is substituted in the equation

Pa

C + PbL 6.

then C = \/ 4ab P 7.
T
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where P is a measure of trip making (at its simplest Population, but it
could be a weighted value to take into account trip making propensities).
The total cost to users and providers would then be given by;

M=P \/ 4ab + ¢T 8.
T
which can be differentiated to give minimum total cost when
2z
T - \/ Aabb” 9,
3 C

The consequences of these highly simplified mathematical relations-
hips for geographical studies of accessibility are two-fold. First, if it is in-
tented to look for statistical associations between network provision and
other variables (population, costs of access etc.) these equations suggest
a specification of variables which is not intuitively obvious: for example
equation 2 above would suggest an association between network provi-
sion and the square root of population {(see Howe, 1971) while equation
9 suggets an association between sheduled service provision and the cube
root of population. The second consequence refers to the assessment of
equity or fairness in network provision. It will be evident that these op-
timal networks will not meet either of the two criteria commonly adop-
ted for equity in provision. On the one hand the optimal networks will in
general show much greater variations in provision than a policy of equal
access for all, on the other hand they will in general show less variation
than would be expected under a policy of making provision simply pro-
portional to population.
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