A-realcompact spaces.

Jorge BUSTAMANTE, José R. ARRAZOLA and Raúl ESCOBEDO

Abstract

Relations between homomorphisms on a real function algebra and different properties (such as being inverse-closed and closed under bounded inversion) are studied.

1 Introduction and notation

By a function algebra A on X we mean a family of real-valued functions on X such that: 1) A is a linear algebra with unit under operations defined pointwise, 2) A separates points on X and 3) A is closed under bounded inversion, that is, if $f \in A$ and $f \geq 1$, then $\frac{1}{f} \in A$. We denote by $Hom(A)$ the family of all A-homomorphisms, that is, non null multiplicative real linear functionals on A, endowed with the Gelfand topology.

$Hom(A)$ has been intensively studied when X is a completely regular Hausdorff space and A is $C(X)$ (see [12]). In recent years different papers have been devoted to study homomorphisms on some subalgebras of $C(X)$, for example algebras of differentiable functions have been considered in [1]-[5], [14] and [15]. As can be seen in the quoted papers, in studying function algebras frequently one needs results asserting that a homomorphism is the evaluation at some point of the supporting space. This paper is devoted to elaborate a general theory related with this subject.

AMS Subject Classification: 46E25, 54C40.

2 Single-set evaluating algebras and A-realcompactness

2.1.- Let \(X \) be a completely regular Hausdorff space, \(Y \subseteq X \) and \(f : Y \to \mathbb{R} \) a continuous map. If \(f \) has a continuous extension to \(p \in X \setminus Y \), this extension will be denoted by \(\hat{f}(p) \). For \(f : X \to \mathbb{R} \), \(Z(f) = \{ x \in X : f(x) = 0 \} \). A set \(S \subseteq Y \) is a zero set if there exists \(g \in C(Y) \) such that \(S = Z(g) \) and \(\overline{S}^X \) is the closure of \(S \) in \(X \). As usual \(\beta X \) denotes the Stone-Čech compactification of \(X \).

2.2.- The elements of any function algebra can be considered as uniformly continuous functions on \(X \) in the following sense. Denote by \(A_b \) the subalgebra of all bounded functions in \(A \). Let \(U_A \) be the uniformity generated on \(X \) by \(A_b \), that is \(U_A \) is defined by the pseudometrics

\[
d_f(x, y) = |f(x) - f(y)|; \quad f \in A_b, x, y \in X.
\]

Let \(\tau_A \) denote the topology induced by \(U_A \) on \(X \). Since \(A \) separates points in \(X \), \((X, \tau_A) \) is a completely regular Hausdorff space. All topological notions on \(X \) are assumed in the \(\tau_A \) topology.

Denote by \(X_A \) the completion of the uniform space \((X, U_A) \), then \(X_A \) is a compact Hausdorff space and \(X \) can be considered as a dense subspace of \(X_A \). It is known that each \(f \in A_b \) has a unique continuous extension \(\hat{f} \) to \(X_A \). Set \(\hat{A} = \{ f : f \in A_b \} \). \(\hat{A} \) separates points in \(X_A \) ([7]) then, by the Stone-Weierstrass theorem, \(\hat{A} \) is a dense subspace of \(C(X_A) \) in the uniform norm.

2.3.- The following result from [7] will be used in the sequel:

Theorem. Let \(A \) be a function algebra on \(X \), then

(\(a \)) \(\varphi \in \text{Hom}(A_b) \) if and only if there exists a (unique) \(p \in X_A \) such that \(\varphi(f) = \hat{f}(p) \) for every \(f \in A \). Moreover \(X_A \) is (homeomorphic to) the maximal ideal space of \(A_b \);

(\(b \)) \(\varphi \in \text{Hom}(A) \) if and only if there exists a (unique) point \(p \in X_A \) such that, every \(f \in A \) has a finite continuous extension \(\hat{f}(p) \) to \(p \) and \(\varphi(f) = \hat{f}(p) \). The set \(I(A) \) of all such \(p \), with the topology induced by \(X_A \), is (homeomorphic to) the maximal ideal space of \(A \).
2.4.- In what follows we associate to a given function algebra A the spaces X_A and $I(A)$ defined above. Moreover, we identify $Hom(A)$ with $I(A)$ and X with a (dense) subset of X_A. Thus we have the inclusions,

$$X \subset I(A) \subset X_A.$$

In studying properties of homomorphisms it is important to have conditions to recognize points in $I(A) \setminus X$. It is easy to verify that for a point $p \in X_A \setminus X$ the following assertions are equivalents:

(a) $p \in I(A)$;

(b) for every $f \in A$, there exists a net $\{x_\lambda\}$ in X such that $x_\lambda \to p$ and $f(x_\lambda)$ is bounded;

(c) for every $f \in A$, there exists a neighbourhood V of p in X_A such that $f(V \cap X)$ is bounded.

2.5.- We need some definitions: a function algebra A on X is called single-set evaluating if, for every $\varphi \in A$ and each $f \in A$, there exists $x \in X$ such that $\varphi(f) = f(x)$. A is called inverse-closed if for every $f \in A$ such that $Z(f) = \emptyset$, $\frac{1}{f} \in A$. It is easy to prove that inverse-closed algebras are single-set evaluating. There exist single-set evaluating algebras which are not inverse-closed [6].

2.6.- Given a nonempty set X, (A,B) is called a subordinated pair [7] on X if: i) A and B are function algebras on X; ii) $B \subseteq A$; iii) every homomorphism on B has an extension to a homomorphism on A.

2.7.- Theorem. For a function algebra A on X the following conditions are equivalent:

(a) A is single-set evaluating;

(b) For all $p \in I(A) \setminus X$, if $f \in A$ and $0 < f \leq 1$, then $f(p) \neq 0$;

(c) (RA,A) is a subordinated pair, where RA the smallest inverse-closed algebra on X containing A.
Proof.

i) Suppose that (a) holds but (b) does not. Fix \(p \in J(A) \setminus X \) and \(h \in A \) such that \(0 < h \leq 1 \) and \(h(p) = 0 \). Since evaluation at \(p \) is a homomorphism on \(A \), \(A \) is not single-set evaluating.

ii) Suppose that (b) holds and \(A \) is not single-set evaluating. Take \(\varphi \in Hom(A) \), \(p \in f(A) \) and \(k \in A \) such that \(\varphi(g) = \hat{g}(p) \) for every \(g \in A \) and \(\varphi(k) \neq k(x) \) for all \(x \in X \). Set \(h(x) = (k(x) - \varphi(k))^2 \) and \(f(x) = \frac{h(x)}{1 + h(x)} \). Then \(\hat{f}(p) = \varphi(f) = 0 \) and \(0 < f(x) \leq 1 \). This contradicts (b).

iii) For (a) implies (c) see lemma 16 of [6].

iv) Since \(RA \) is inverse-closed it is single-set evaluating. If \((RA, A) \) is a subordinated pair, then \(A \) is single-set evaluating.

2.8.- Recall that a completely regular Hausdorff space \(Y \) is realcompact [12] if every \(C(Y) \)-homomorphism is the evaluation at some point \(p \) in \(Y \). This concept can be generalized in the following way: if \(A \) is a function algebra on \(X \), \(X \) is said to be \(A \)-realcompact if every \(A \)-homomorphism is the evaluation at some point \(p \) of \(X \). A similar notion was used in [8], [16] and [17].

2.9.- Remarks.

1) If \(A_b = A \), then \(X \) is \(A \)-realcompact if and only if \(X \) is compact (in the \(\tau_A \) topology). When \(X_A \setminus X \neq \emptyset \) we can obtain \(A \)-realcompactness only when \(A \) contains an unbounded function. In particular if \((X, \tau) \) is a pseudocompact noncompact, completely regular Hausdorff space and \(A = C(X) \), then \(X \) is not \(A \)-realcompact.

2) Notice that if \(A \) and \(B \) are function algebras on \(X \), \(B \subset A \), with \(X \) \(A \)-realcompact, then \(X \) is \(B \)-realcompact if and only if \((A, B) \) is a subordinated pair.

2.10.- Proposition. Let \(A \) and \(B \) be function algebras on \(X \) with \(B \) uniformly dense in \(A \). Then \((A, B) \) is a subordinated pair.
A-realcompact spaces

Proof. Since B_b is uniformly dense in A_b, the spaces $C(X_A)$ and $C(X_B)$ are isomorphic, thus by the Banach-Stone theorem (see [12]) X_A and X_B are homeomorphic. We may identify X_A and X_B. Fix a homomorphism φ on B and a point $p \in X_A$ such that for every $f \in B$, $\varphi(f) = \tilde{f}(p)$.

We will finish our proof by showing that every $g \in A$ has a (unique) continuous finite extension to p. Fix $g \in A$ and $f \in B$ such that $\sup_{x \in X_A} |f(x) - g(x)| \leq 1$. There exist a neighbourhood V of p in X_A and a positive constant M such that for every $y \in V \cap X$, $|f(y)| \leq M$. Then for every $y \in V \cap X$, $|g(y)| \leq M + 1$, now the assertion follows from 2.4.

In [10] (proposition 1.8) was proved the following fact: if X is a realcompact space and $A \subset C(X)$ is a subalgebra with unit, closed under bounded inversion, uniformly dense in $C(X)$, then $\text{Hom}(A) = X$.

Our next result, as an application of proposition 2.10 (see remark 2.9.2), provides a natural extension.

2.11.- Corollary. Let A and B be function algebras on X, $B \subset A$. If B is uniformly dense in A and X is A-realcompact, then X is B-realcompact.

2.12.- Theorem. Let A be a single-set evaluating algebra on X. Then X is A-realcompact if and only if X is RA-realcompact (see (e) in 2.7). Moreover if A is inverse-closed, then X is A-realcompact if and only if for every $p \in X_A \setminus X$, there exists

$$f \in A_b, \quad 0 < f \leq 1, \quad \text{such that } \tilde{f}(p) = 0. \quad (1)$$

Proof. The first part follows from theorem 2.7, the remark 2) in 2.9 and the construction of RA.

For the second part suppose first that X is A-realcompact. Suppose that $p \in X_A \setminus X$. Taking into account that $p \notin I(A) = X$, there exists $f \in A \setminus A_b$ such that for every net $\{x_\lambda\}$ in X, with $x_\lambda \to p$, $f(x_\lambda)$ is unbounded (see the last assertion in 2.4). Then $h(p) = 0$ and $0 < h(x) \leq 1$ for $x \in X$, where $h(x) = \frac{1 + f(x)}{1 + f^2(x)}$.

Suppose now that for all $p \in X_A \setminus X$ there exists $f \in A$ such that $0 < f \leq 1$ and $\tilde{f}(p) = 0$. By defining $g(x) = \frac{1}{f(x)}$, we have that $g \in A$.
and for every net \(\{x_\lambda\} \) in \(X \), \(x_\lambda \to p \), \(\{g(x_\lambda)\} \) is not bounded. This completes the proof.

2.13.- Remark. In general condition (1) does not imply \(A \)-realcompactness. For example, let \(X \) be the real interval \((0,1] \) and \(A \) the restriction of continuous functions in \([0,1] \) to \((0,1] \). In this case the condition holds but \(X \) is not \(A \)-realcompact (notice that \(X_A = [0,1] \)).

2.14.- Theorem. Let \(A \) be a function algebra. Then \(X_A \) is the Stone-Čech compactification of \(X \) if and only if for any disjoint zero sets \(S \) and \(T \) in \(X \), there exists \(f \in A \), such that

\[
0 \leq f \leq 1, \quad f(S) = \{0\} \quad \text{and} \quad f(T) = \{1\}. \tag{2}
\]

Proof. If \(A \) satisfies (2) by theorem 11 of [11], \(A_b \) is uniformly dense in the space \(C_b(X) \) of all real continuous bounded functions on \(X \), then \(\beta X = X_A \).

On the other hand if \(\beta X = X_A \), \(A_b \) is dense in \(C_b(X) \) and the result follows again from theorem 11 of [11].

From theorems 2.12 and 2.14 we obtain a proof of the following result due to S. Mrówka (proposition 3.11.10 in [9]).

2.15.- Corollary. Let \(X \) be a completely regular Hausdorff space. Then \(X \) is realcompact if and only if for every \(p \in \beta X \setminus X \), there exists \(f \in C(X) \) such that \(0 < f(x) \leq 1 \), \(x \in X \), and \(f(p) = 0 \).

The next result extends Theorem 2 of [15]. Jaramillo presented in [15] different examples of function algebras for which Theorem 2.16 may be applied.

2.16.- Theorem. Let us suppose that a function algebra \(A \) on \(X \) satisfies the following conditions:

(a) for every \(f, g \in A \) and \(\rho, \epsilon > 0 \), if the sets

\[
P_\epsilon(f) = \{x : |f(x)| \leq \epsilon\} \quad \text{and} \quad Q_\rho(g) = \{x : |g(x)| \geq \rho\}
\]

are not empty and disjoint, there exists \(h \in A \), \(0 \leq h \leq 1 \), such that
\[
h(P_\varepsilon(f)) = \{0\} \text{ and } h(Q_\rho(g)) = \{1\};
\]

(b) given an open (in the \(\tau_A \) topology) cover \(\{H_n\} \) of \(X \), such that
\[
\overline{H_n} \subseteq H_{n+1}, \text{ and } f : X \to \mathbb{R}, \text{ if there exists a sequence } \{f_n\} \text{ in } A
\]
such that \(f_n \mid_{H_n} = f \mid_{H_n}, \text{ then } f \in A; \)

(c) for every \(p \in X_A \setminus X \), there exists \(g \in C(X_A) \) which satisfies (1).

Then \(X \) is \(A \)-realcompact.

Proof. Let \(\varphi \) be a homomorphism on \(A \). There exists \(p \in X_A \) such that
\[
\varphi(f) = \hat{f}(p) \text{ for every } f \in A. \text{ We will show that } p \in X.
\]
Suppose that \(p \in X_A \setminus X \), take \(g \in C(X_A) \) such that \(0 < g \leq 1 \) and \(\hat{g}(p) = 0 \). Set
\[
E_n = \{ x \in X_A : g(x) > \frac{1}{2^n} \}, \ n = 1, 2, ...
\]

We may suppose that each \(E_n \) is not empty. Since \(\hat{A} \) is dense in \(C(X_A) \), there exists a sequence \(\{f_n\} \) in \(A_0 \) such that
\[
\| \hat{f}_n - g \|_\infty \leq \frac{1}{2^{n+3}} \text{ and } \| \hat{f}_n - \hat{f}_{n+1} \|_\infty \leq \frac{1}{2^{n+3}},
\]
where \(\| . \|_\infty \) denotes the sup norm in \(C(X_A) \). Set
\[
F_n = \{ x \in X_A : \hat{f}_n(x) \geq \frac{1}{2^n} \}.
\]
It is easy to prove that for \(n \geq 2, E_{n-1} \subseteq F_n \subseteq E_{n+1}. \)

Now we have that \((X \cap \bigcup_{n \in \mathbb{N}} E_n) = \bigcap_{n \in \mathbb{N}} (X \setminus F_n) \) thus \(\{F_{2n} \cap X\} \) is an increasing open cover of \(X \). For each \(n \geq 2 \) take \(g_n \in A, 0 \leq g_n \leq 1 \), such that
\[
g_n(F_{2n+2} \cap X) = \{1\} \text{ and } g_n(F_{2n} \cap X) = \{0\}.
\]
Notice that \(\hat{g}_n(p) = 1 \), thus \(\varphi(\hat{g}_n) = 1 \). The function \(f(x) = \sum_{n=2}^{\infty} g_n(x), \)
\(x \in X \) is well defined. Set \(k_n(x) = \sum_{j=2}^{n} g_j(x) \). Since \(k_n \in A, f \in A. \)
It is easy to see that for every \(x \in X \) and each \(n \), \(k_n(x) \leq f(x) \), then
\[
\varphi(f) \geq \varphi(k_n) = \sum_{j=1}^{n} \varphi(g_j) = n \quad (\text{see 1.4 of [13]}),
\]
this says that \(\varphi(f) = \infty \), a contradiction.

2.17.- Theorem 2.3 gives a representation of the real maximal ideal of \(A \) but, as the following result will prove, we can not expect to obtain a one to one relation between \(z \)-ultrafilters and maximal ideals. The notion on \(z \)-filter is used as in [12]. An ideal in \(A \) is a proper ideal. For an ideal \(I \),
\[
Z(I) = \{Z(f) : f \in I\}.
\]
If \(J \) is a \(z \)-filter \(J^{-1}_A = \{f \in A : Z(f) \in J\} \).

2.18.- Theorem. Let \(A \) be a function algebra which satisfies (2). The following assertion are equivalent:

(a) for each maximal ideal \(I \) in \(A \), there exists \(p \in \beta X \) such that
\[
I = \{f \in A : p \in \overline{Z(f)}^{\beta X}\}.
\]

(b) for each maximal ideal \(I \) in \(A \), there exists a maximal ideal \(J \) in \(C(X) \) such that \(I \subset J \);

(c) for each maximal ideal \(I \) in \(A \), \(Z(I) \) is a \(z \)-ultrafilter;

(d) \(A \) is inverse-closed.

Proof. Since \(A \) satisfies (2), for every zero set \(P \) in \(X \) there exists \(f \in A \) such that \(Z(f) = P \).

The assertions (a) implies (b) and (b) implies (a) follow directly from the Gelfand-Kolmogorov theorem ([12], 7.3).

(b) implies (c) Fix maximal ideals \(I \) and \(J \) in \(A \) and \(C(X) \) respectively, with \(I \subset J \). \(Z^{-1}_A(Z(J)) \) is an ideal in \(A \). Therefore, \(I = Z^{-1}_A(Z(J)) \). Since \(Z(I) = Z(J), Z(I) \) is a \(z \)-ultrafilter.

(c) implies (b) Fix a maximal ideal \(I \) in \(A \), since \(Z(I) \) is a \(z \)-ultrafilter
\[
J = \{f \in C(X) : Z(f) \in Z(I)\}
\]
is a maximal ideal in \(C(X) \) containing \(I \).

(c) implies (d) Take \(f \in A \) such that \(Z(f) = \emptyset \) and set
\[
I = \{gf : g \in A\}.
\]
Since \(f \in I \), \(I \) can not be an ideal, therefore \(I = A \).

(d) implies (c) Fix an ideal \(I \) in \(A \). Since \(A \) is inverse closed \(\emptyset \notin Z(I) \).

On the other hand, if \(f, g \in I \) and \(h \in A \), \(Z(f^2 + g^2) = Z(f) \cap Z(g) \) and
\[
Z(f) \subset Z(fg) = Z(g).
\]
3 The sequentially evaluating property

3.1.- A function algebra A on X is called *sequentially evaluating* if, for every $\varphi \in \text{Hom}(A)$ and each sequence $\{f_n\}$ in A, there exists $x \in X$ such that $\varphi(f_n) = f_n(x)$, for $n = 1, 2, \ldots$ This property has been intensively studied in [2]. As far as we know the use of this property goes back to S. Mazur (see the note to statement A of [8]). If a function algebra A on X has the sequentially evaluating property, then every homomorphism on A is sequentially continuous on A°, where A° is the algebra A endowed with the pointwise convergence topology. This fact was noticed for some particular algebras in [2] and [6].

3.2.- Denote by $[A \cup C(X)]$ the closed under bounded inversion algebra on X generated by A and $C(X)$. By setting

$$A_1 := \{ \sum_{k=1}^{n} f_k g_k : f_k \in A, g_k \in C(X), n \in \mathbb{N} \},$$

we have that $[A \cup C(X)] = \{ h_1/h_2 : h_1, h_2 \in A_1, h_2 \geq 1 \}$.

3.3.- Theorem. Let A be a single-set evaluating algebra on X. The following conditions are equivalent:

(a) A has the sequentially evaluating property.

(b) Each zero set in $X \setminus X$ does not meet $I(A)$.

(c) $[A \cup C(X)]$ is single-set evaluating.

Proof. Suppose that (a) holds and (b) fails, then there exists a zero set $P \subset X \setminus X$ such that $P \cap I(A) \neq \emptyset$. Fix $q \in P \cap I(A)$ and let φ be the evaluation at q. Since P is a zero set, there exists $f \in C(X)$ such that $P = Z(f)$. Since A is dense in $C(X)$ for the uniform norm, there exists $\{f_n\}$ in A_b, with $f_n \to f$ uniformly on X. We have that $\varphi(f_n) = f_n(q) \to f(q) = 0$. Set $g_n = f_n - \varphi(f_n) \in A_b$. According to the above arguments $g_n \to f$ uniformly on X and $\varphi(g_n) = 0$. By the sequentially evaluating property there exists $x_0 \in X$ such that $\varphi(g_n) = g_n(x_0) = 0$. This says that $\lim_{n} g_n(x_0) = f(x_0) = 0$ and we have a contradiction.

(b) implies (c) Suppose that (b) holds and let φ be a homomorphism on $[A \cup C(X)]$. We will prove that for each $h \in [A \cup C(X)]$, ...
$Z(h - \varphi(h)) \neq \emptyset$. Since φ is a homomorphism on $A (C(X_A))$, there exists $p \in I(A) (g \in C(X_A))$ such that, for each $f \in A \ (g \in C(X_A))$ $\varphi(f) = \hat{f}(p) (\varphi(g) = \hat{g}(q))$. Since $A_b \subset A \cap C(X_A)$, for each $f \in A_b$, $\hat{f}(p) = \hat{f}(q)$. Taking into account that \hat{A} separates points in X_A, we have that $p = q$. Now if $f \in (A \cup C(X_A))$, set $g_f = f - \varphi(f)$. If $Z(g) \cap X = \emptyset$, then $Z(g) \cap I(A) = \emptyset$ and this is not possible ($p \in Z(g) \cap I(A)$).

Since for every $f \in A$, $(f - \varphi(f))^2$ has a continuous extension to X_A, we have that for any $h \in A_1$ (see 3.2), $Z(h - \varphi(h)) \neq \emptyset$. In fact, if $f_1, ..., f_n \in A$ and $g_1, ..., g_n \in C(X_A)$,

\[
Z(h - \varphi(h)) = \left\{ \sum_{k=1}^{n} \frac{(f_k - \varphi(f_k))^2}{1 + (f_k - \varphi(f_k))^2} + (g_k - \varphi(g_k))^2 \right\}
\]

Using the continuity of $f_k - \varphi(f_k)$ and $g_k - \varphi(g_k)$, we have that for any net $\{x_\lambda \}_{\lambda \in \Lambda}$ in X, such that $x_\lambda \to p$ in X_A,

\[
\lim_{\lambda} h(x_\lambda) = \sum_{k=1}^{n} \lim_{\lambda} f_k(x_\lambda) \lim_{\lambda} g_k(x_\lambda) = \sum_{k=1}^{n} \hat{f}_k(p) \hat{g}_k(p) = \hat{h}(p).
\]
Finally, if \(h = \frac{h_1}{h_2} \in [A \cup C(X_A)] \) with \(h_1, h_2 \in A_1 \) (\(h_2 \geq 1 \)), set \(\hat{h}(p) = \frac{h_1(p)}{h_2(p)} \). Then, by defining \(\varphi(h) = \hat{h}(p) \) for \(h \in [A \cup C(X_A)] \), we have that \(\varphi \in Hom([A \cup C(X_A)]) \) and \(\varphi(f) = \psi(f) \) for \(f \in A \).

Now, fix a sequence \(\{f_n\} \) in \(A \). Set \(g_n(x) = \frac{1}{2^n} \frac{(f_n(x) - \varphi(f_n))^2}{1 + (f_n(x) - \varphi(f_n))^2} \) and \(g = \sum_{n=1}^{\infty} g_n \). We have that \(\hat{g} \in C(X_A) \). Let us prove that \(\varphi(g) = 0 \).

In fact, notice that the sequence \(\left\{ \sum_{k=1}^{n} g_k \right\} \) converges uniformly to \(g \) and \(\sum_{k=1}^{n} g_k \leq g \). Then, given \(\epsilon > 0 \) and \(n \) such that \(\| \sum_{k=1}^{n} g_k - g \|_{\infty} < \epsilon \), it follows that

\[
0 = \varphi\left(\sum_{k=1}^{n} g_k \right) \leq \varphi(g) = \varphi(g - \sum_{k=1}^{n} g_k) \leq \epsilon \varphi(1) = \epsilon.
\]

Taking into account that \([A \cup C(X_A)] \) is single-set evaluating, there exist \(x_0 \in X \) such that \(0 = \varphi(g) = g(x_0) \). Therefore \(\varphi(f_n) = f_n(x_0) \) for each \(n \).

3.4. **Remark.** If \(A \) is an inverse-closed algebra on \(X \) closed under the uniform convergence, then \([A \cup C(X_A)] = A\), and \(A \) has the sequential evaluating property. This assertion can be obtained from the result of S. Mazur quoted in [8] and gives a proof of following fact: \(X \) need not be \(A \)-realcompact when \(A \) is a sequentially evaluating algebra on \(X \). For certain class of algebras the sequentially evaluating property implies \(A \)-realcompactness (for example if \(X \) is a Lindelöf space in the \(\tau_A \) topology), this just was the main reason for studying this property in [2].

The last proposition in this section can be proved as theorem 2.16.

3.5. **Proposition.** If a function algebra \(A \) satisfies conditions (a) and (b) in theorem 2.16 then \(A \) has the sequentially evaluating property.

Acknowledgments. The authors thank the referee for several suggestions which have been incorporated into the final version.
References

Jorge Bustamante G.
Raúl Escobedo C.
José R. Arrazola R.
Fac. Físico-Matemática
Universidad Autónoma de Puebla,
Puebla
Mexico.
e-mail: Jbustat@fcfm.buap.mx

Recibido: 14 de Octubre de 1996
Revisado: 10 de Abril de 1997