A summability condition on the gradient ensuring BMO.

Alberto FIORENZA*

Abstract

It is well-known that if $u \in W^{1,1}(\Omega)$, $\Omega \subset \mathbb{R}^N$ satisfies $|Du| \in L^N(\Omega)$, then u belongs to $BMO(\Omega)$, the John-Nirenberg Space. We prove that this is no more true if $|Du|$ belongs to an Orlicz space $L_A(\Omega)$ when the N-function $A(t)$ increases less than t^N. In order to obtain $u \in BMO(\Omega)$, we impose a suitable uniform L_A condition for $|Du|$.

1 Introduction

In a recent paper Fusco-Lions-Sbordone ([FLS]) gave imbeddings of Orlicz-Sobolev spaces $W^{1,A}(\Omega)$, Ω a cube in \mathbb{R}^N, in Orlicz spaces with exponential growth, when the Young function A is of type $A(t) = t^N \log^\sigma (e + t)$. If $\sigma = 0$, the space $W^{1,A}(\Omega)$ reduces to $W^{1,N}(\Omega)$ and it is well-known that such space is imbedded in $BMO(\Omega)$. If $\sigma = 1$ there are some counterexamples (see [GISS]) showing that $W^{1,A}(\Omega)$ is not imbedded in $BMO(\Omega)$.

In this paper first we show, adapting an example appeared in [GISS], that for any Young function $A(t)$ which grows essentially less than t^N, the space $W^{1,A}(\Omega)$ is not imbedded in $BMO(\Omega)$. Such a result has been recently proved, in a different way, in a paper by Cianchi-Pick [CP]. Moreover, if we require that, in some sense, the gradient of a function u is in $L_A(\Omega, \mathbb{R}^N)$ uniformly with respect to the cubes contained in Ω, then

1991 Mathematics Subject Classification: 46E30, 46E35.

*This work has been partially performed as a part of a National Research Project supported by M.U.R.S.T.

we get the imbedding in $BMO(\Omega)$, even if the Young function $A(t)$ has a growth essentially less than t^N. Namely, let us introduce the uniform Orlicz spaces

$$f \in \mathcal{U}_A(\Omega, \mathbb{R}^N) \iff \sup_{Q \subset \Omega} |Q|^{1/H} \|f\|_{L^A(Q)} < +\infty$$

where the supremum is extended to all cubes Q contained in Ω with sides parallel to the coordinate axis. If $A(t) = t^N$, then $\mathcal{U}_A(\Omega, \mathbb{R}^N)$ reduces to $L^N(\Omega, \mathbb{R}^N)$; if $A(t) = \frac{t^N}{\log^2(e+t)}$, $\sigma > 0$, then $\mathcal{U}_A(\Omega, \mathbb{R}^N)$ contains $L^N(\Omega, \mathbb{R}^N)$. We show that for such A if $\nabla u \in \mathcal{U}_A(\Omega, \mathbb{R}^N)$ then $u \in BMO(\Omega)$ (see Corollary 3.4) and, more generally, following [IS], if we introduce the space

$$f \in \mathcal{U}_0^N(\Omega, \mathbb{R}^N) \iff \sup_{Q \subset \Omega} |Q|^{1/H} \sup_{0 < \epsilon \leq 1} \left(e^{\sigma} \frac{\int_Q |f|^{N-\epsilon} \, dx}{\int_Q |f| \, dx} \right)^{\frac{1}{N-\epsilon}} < +\infty$$

we have that $\mathcal{U}_A(\Omega, \mathbb{R}^N) \subset \mathcal{U}_0^N(\Omega, \mathbb{R}^N)$ (see Proposition 3.2) and, if $\nabla u \in \mathcal{U}_0^N(\Omega, \mathbb{R}^N)$, then $u \in BMO(\Omega)$ (see Theorem 3.3).

Finally, following [FLS], we will prove also some imbedding results in Orlicz spaces for the Riesz Potential Operator in the critical case (see Theorem 3.5).

2 Notation and Preliminary results

Let us fix notation and recall basic concepts. For our purposes, a Young function will be any nonnegative, even, convex function $\Phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that Φ is (strictly) increasing on $[0, \infty)$, and $\lim_{t \to 0} \Phi(t)/t = 0$, $\lim_{t \to \infty} \Phi(t)/t = \infty$.

Let Ω be a bounded open set in \mathbb{R}^N. The Orlicz space $L_\Phi(\Omega)$ is defined to be the smallest vector space containing the set of all measurable functions f defined on Ω such that $\Phi(|f|) \in L^1(\Omega)$. It may be checked that $L_\Phi(\Omega)$ is a Banach space with respect to the norm

$$\|f\|_\Phi = \inf \left\{ \lambda > 0 : \int_\Omega \Phi \left(\frac{|f|}{\lambda} \right) \, dx \leq 1 \right\}$$
where the symbol \(\int \limits _\Omega \frac{1}{|e|} \int \) stands for \(\frac{1}{|e|} \int \). A special case is \(\Phi(t) = \frac{p^t}{p} \) (\(p \geq 1 \)), in which \(L_\Phi(\Omega) \) reduces to \(L^p(\Omega) \). If \(\Phi(t) = \frac{t^p}{\log^\sigma(e + t)} \) (\(p > 1, \sigma \geq 0 \)) then the corresponding Orlicz space will be denoted by \(L^p \log^{-\sigma} L(\Omega) \). Following [15], we will consider also a space larger than \(L^p \log^{-\sigma} L(\Omega) \), namely \(L^p_\sigma(\Omega) \) (\(p > 1, \sigma \geq 0 \)), defined as the Banach space of all measurable functions on \(\Omega \) such that

\[
\|f\|_{L^p_\sigma} = \sup_{0 < \epsilon \leq 1} \left(\epsilon^\sigma \int \limits _\Omega |f|^{p-\epsilon} \, dx \right)^{\frac{1}{p-\epsilon}} < +\infty.
\]

Following [G], the closure of \(L^{\infty}(\Omega) \) in \(L^p_\sigma(\Omega) \) will be denoted by \(\Sigma^p_\sigma(\Omega) \) (by \(\Sigma^p(\Omega) \) if \(\sigma = 1 \)), and it is characterized as the space of all measurable functions on \(\Omega \) such that

\[
\lim_{\epsilon \to 0} \left(\epsilon^\sigma \int \limits _\Omega |f|^{p-\epsilon} \, dx \right)^{\frac{1}{p-\epsilon}} = 0.
\]

In [FLS] it is proved the following extension of Trudinger's imbedding theorem ([T]) for \(W_0^{1,N}(\Omega) \) functions:

Theorem 2.1. If \(u \in W_0^{1,1}(\Omega) \) is such that \(|Du| \in L^N(\Omega) \) for some \(\sigma \geq 0 \), then there exist \(c_1 = c_1(N,\sigma) \), \(c_2 = c_2(N,\sigma) \) such that

\[
\int \limits _\Omega \exp \left(\frac{|u|}{c_1 \|Du\|_{L^N(\Omega)}} \right)^{\frac{N}{N-1+\sigma}} \, dx \leq c_2.
\]

We remark that if \(\Omega \) is convex, then an inequality of the same type is true also for functions \(u \in W^{1,1}(\Omega) \), provided \(|u| \) is replaced by \(|u - \int \limits _\Omega u \, dx| \). In fact, giving a closer look to the proof of Theorem 2.1, the assumption \(u \in W_0^{1,1}(\Omega) \) has been used only to write the inequality

\[
|u(x)| \leq C(N) \int \limits _\Omega |Du| |x - y|^{1-N} \, dy
\]
If \(u \in W^{1,1}(\Omega) \) and \(\Omega \) is convex, replacing \(|u| \) by \(|u - \int_{\Omega} u\,dx| \), this inequality is true with the constant in the right hand side depending only on \(N \) and the shape of \(\Omega \), but independently on the measure of \(\Omega \) ([GT]). In the proof of Theorem 3.3 we will use such inequality with \(\Omega \) replaced by a cube, therefore the constants will depend only on \(N \).

In [FLS] it is proved also that if \(u \in W_0^{1,1}(\Omega) \) and \(|Du| \in \Sigma^N(\Omega) \) then \(u \in \exp(\Omega) \), that is the closure of \(L^\infty(\Omega) \) in the Banach space

\[
\text{EXP}(\Omega) = \left\{ f \in L^1(\Omega) : \exists \lambda > 0 \text{ such that } \int_{\Omega} \exp \left(\frac{|f|}{\lambda} \right) \, dx < \infty \right\}.
\]

More generally, we will denote by \(\exp_\alpha(\Omega) \), \(\alpha > 0 \), the closure of \(L^\infty(\Omega) \) in \(\text{EXP}_\alpha(\Omega) \), the Orlicz space generated by the function \(\Phi(t) = \exp(t^\alpha) - 1 \).

Finally, let us recall that \(BMO(\Omega) \) is defined (see [S] for instance) as the space of the measurable functions \(u \) such that

\[
||u||_{BMO} = \sup_{Q \subset \Omega} \int_{Q} |u - u_Q| \, dx < +\infty
\]

where the supremum is taken over all cubes \(Q \) with sides parallel to the coordinate axes, and \(u_Q \) stands for \(\int_{Q} u\,dx \). We would get an equivalent definition of \(BMO(\Omega) \) if we replace the family of all cubes by the family of all balls. It is possible to prove (see [KJF] for instance) that if \(\Omega \) is a cube then \(BMO(\Omega) \) functions can be characterized by the following property:

\[
\exists \lambda > 0 : \sup_{Q \subset \Omega} \int_{Q} \exp \left(\frac{|u - u_Q|}{\lambda} \right) \, dx < +\infty.
\]

3 The main results

Let us recall that by Moser's inequality ([M]) \(W^{1,N}(\Omega) \) functions are \(\exp_{\frac{N}{N-1}}(\Omega) \) functions, and if \(|Du| \in L^N \log^{-1/q} L(\Omega) \) then \(u \in \exp_{\frac{N}{N-1} + \frac{N}{q}}(\Omega) \).

We now study imbeddings in \(BMO(\Omega) \). While \(W^{1,N}(\Omega) \) functions are \(BMO(\Omega) \) functions, if \(A(t) \) is a Young function with a growth essen-
A summability condition on the gradient... 317

Finally less than t^N, then the Orlicz-Sobolev space $W^{1,A}(\Omega)$ is not imbedded in $BMO(\Omega)$. In fact we have the following example (see [GISS] for the case $A(t) = t^N \log^{-\sigma}(e+t)$):

Example 3.1. Let Ω be a bounded open set in \mathbb{R}^N, and let A be a Young function of the type $A(t) = t^N \varphi(t)$, $\varphi(+\infty) = 0$. Then there exists a measurable function u such that $|Du| \in L_A(\Omega)$ and $u \notin BMO(\Omega)$.

Let $\{a_j\}_{j \in \mathbb{N}}$ be such that

$$\sum_j a_j^N j^{-2} < +\infty \quad (3.1)$$

and let $\{r_j\}_{j \in \mathbb{N}}$ be such that

$$\sum_j r_j < +\infty \quad (3.3)$$

Let us note that by (3.3) we can find a sequence of points $x_j \in \Omega$ such that the balls $B(x_j, r_j)$ are pairwise disjoint and contained in Ω (at least for j large enough). Let us define

$$h_j(x) = a_j h \left(\frac{x - x_j}{r_j} \right) \quad \forall x \in \Omega, \forall j \in \mathbb{N}$$

where

$$h(z) = \begin{cases}
0 & \text{if } |z| \geq 1 \\
- \log |z| & \text{if } \frac{1}{2} \leq |z| \leq 1 \\
\log 2 & \text{if } |z| \leq \frac{1}{2}
\end{cases} \quad \forall z \in \mathbb{R}^n$$

and let $u = \sum_j h_j$. Notice that $u(x) = h_j(x)$ if $|x - x_j| < r_j$.

Hence, we have

$$\|u\|_{BMO} \geq \int_{B_j} |h_j - (h)_B| \, dx = a_j \int_B |h - (h)_B| \, dx \quad \forall j \in \mathbb{N}$$

where B is the unit ball of \mathbb{R}^n, and therefore, by (3.2), $u \notin BMO(\Omega)$.

On the other hand
\[|Dh_j| \leq \begin{cases} \frac{a_j}{|x - x_j|} & \text{if } \frac{r_j}{2} \leq |x - x_j| \leq r_j \\ 0 & \text{if } |x - x_j| \leq \frac{r_j}{2} \end{cases} \]
and therefore, by (3.4),
\[
\int_{|x-x_j| \leq r_j} A(|Dh_j|) \, dx \leq \int_{\frac{r_j}{2} \leq |x-x_j| \leq r_j} A \left(\frac{a_j}{|x - x_j|} \right) \, dx
\]
\[
= N \omega_N \int_{\frac{r_j}{2}}^{r_j} A \left(\frac{a_j}{\rho} \right) \rho^{N-1} \, d\rho
\]
\[
= N \omega_N a_j^N \int_{\frac{r_j}{2}}^{r_j} \frac{1}{\rho} \varphi \left(\frac{a_j}{\rho} \right) \, d\rho
\]
\[
\leq N \omega_N a_j^N \int_{\frac{r_j}{2}}^{r_j} \frac{1}{\rho} \cdot \frac{1}{j^2 \log 2} \, d\rho
\]
\[
= N \omega_N a_j^N \frac{1}{j^2}
\]
where \(\omega_N \) denotes the measure of the unit ball in \(\mathbb{R}^n \), from which, summing over \(j \) and using (3.1), we get \(|Du| \in L_A(\Omega) \).

We remark that if \(|Du| \) belongs to some suitable spaces containing \(L^N(\Omega) \) (for instance, weak-\(L^N(\Omega) \)) then it is known that \(u \in \text{BMO}(\Omega) \). Now we introduce some new spaces having this property, which represent a variant of the classical Orlicz spaces. Namely, we consider the functions \(f \in L_A(\Omega) \) such that
\[
|f|_{p,A,\Omega} = \sup_{Q \subset \Omega} |Q|^{\frac{1}{p}} \left\| f \right\|_{L_A(Q)} < \infty
\]
If \(A(t) = t^p \), then \(|f|_{p,A,\Omega} \) reduces to the classical norm in \(L^p \) spaces. If \(p = N \) and \(A(t) = \frac{t^N}{\log^\sigma (e + t)} \) \((N > 1, \sigma > 0) \) then \(|f|_{p,A,\Omega} \) is a norm.
defining a Banach space and it is different from $\|f\|_{L_A(\Omega)}$. The following result hold:

Proposition 3.2. Let $A(t) = \frac{t^N}{\log^\sigma(e + t)}$ ($N > 1, \sigma > 0$). If

$$\sup_{Q \subset \Omega} |Q| \frac{1}{t} \|f\|_{L_A(Q)} < +\infty$$

then

$$\sup_{Q \subset \Omega} |Q| \frac{1}{t} \left(\frac{\int_Q |f|^{N-\epsilon} \, dx}{\log^\sigma(e + t)} \right)^{\frac{1}{N-\epsilon}} < +\infty$$

Proof. Let $f \in L_A(\Omega)$, $f \geq T_\sigma$ where $A(T_\sigma) = 1$. By using the elementary inequality

$$(e + t)^\epsilon < e + t^\epsilon \quad (0 < \epsilon < 1, t \geq 0)$$

we obtain

$$e^\sigma f^{N-\epsilon} = \frac{\log^\sigma[(e + f)^\epsilon]}{f^\epsilon} \frac{f^N}{\log^\sigma(e + f)} \leq \frac{\log^\sigma(e + f)}{f^\epsilon} \frac{f^N}{\log^\sigma(e + f)} \leq C_\sigma \log^\sigma(e + f)$$

for some $C_\sigma > 0$, therefore

$$\sup_{0 < t \leq 1} \left(\frac{\int_Q |f|^{N-\epsilon} \, dx}{\log^\sigma(e + t)} \right)^{\frac{1}{N-\epsilon}} \leq C_\sigma \frac{f^N}{\log^\sigma(e + f)} \int_Q dx$$

If we drop the condition $f \geq T_\sigma$, applying the previous estimate to $\max(|f|, T_\sigma)$ we get

$$\sup_{0 < t \leq 1} \left(\frac{\int_Q |f|^{N-\epsilon} \, dx}{\log^\sigma(e + t)} \right)^{\frac{1}{N-\epsilon}} \leq C_\sigma \frac{\max(|f|, T_\sigma)^N}{\log^\sigma(e + \max(|f|, T_\sigma))} \int_Q dx$$

$$\leq C_\sigma \frac{f^N}{\log^\sigma(e + f)} dx + D_\sigma$$
for some $D_\sigma \geq 0$.

Replacing f by $\frac{f}{\|f\|_{L^A(Q)}}$, the right hand side is majorized by a constant depending only on σ, and independent of Q, therefore the assertion follows multiplying by $\|Q\|^{\frac{1}{N}} \|f\|_{L^A(Q)}$ and taking the supremum over all cubes Q contained in Ω.

\[\blacksquare\]

Theorem 3.3. If $u \in W^{1,1}(\Omega)$, Ω cube in \mathbb{R}^N ($N > 1$), is such that $|Du|$ verifies the condition

\[|Du| \in U^N_\sigma(\Omega, \mathbb{R}^N) \iff \sup_{Q \subset \Omega} |Q|^{\frac{1}{N}} \sup_{0 < c \leq 1} \left(c^\sigma \frac{\int_Q |Du|^N \, dx}{|Q|^N} \right) = M_{u, \sigma} < +\infty, \quad (3.5) \]

for some $\sigma > 0$, then $u \in \text{BMO}(\Omega)$.

Proof. Without loss of generality we can assume $0 < \sigma \leq 1$. Let us fix $Q \subset \Omega$ and let us apply Theorem 2.1 with Ω replaced by Q, and u replaced by $u - u_Q$. We have

\[\int_Q \exp \left(\left(\frac{|u - u_Q|}{c_1 M_{u, \sigma}} \right)^{\frac{N}{N-1+\sigma}} \right) \, dx \leq \int_Q \exp \left(\left(\frac{|u - u_Q|}{c_1 \|Du\|_{L^\infty} |Q|^N} \right)^{\frac{N}{N-1+\sigma}} \right) \, dx \leq c_2(N, \sigma), \]

from which

\[\int_Q \exp \left(\frac{|u - u_Q|}{c_1 M_{u, \sigma}} \right) \, dx = \int_{\frac{|u - u_Q|}{c_1 M_{u, \sigma}} < 1} \exp \left(\frac{|u - u_Q|}{c_1 M_{u, \sigma}} \right) \, dx + \int_{\frac{|u - u_Q|}{c_1 M_{u, \sigma}} \leq 1} \exp \left(\frac{|u - u_Q|}{c_1 M_{u, \sigma}} \right) \, dx \]
A summability condition on the gradient...

\[\leq \int_Q \exp \left(\frac{|u - u_Q|}{c_1 M_{u,\sigma}} \right) \frac{N}{N-1+\sigma} \, dx + \int_Q \exp(1) \, dx \]

\[\leq c_2(N, \sigma) |Q| + e^{|Q|} \]

and therefore

\[\sup_{Q \subset \Omega} \int_Q \exp \left(\frac{|u - u_Q|}{c_1 M_{u,\sigma}} \right) \, dx < +\infty. \]

Since \(\Omega \) is a cube, then \(u \in BMO(\Omega) \).

We prove now the following

Corollary 3.4. Let \(A(t) = \frac{t^N}{\log^\sigma (e + t)} \) \((N > 1, \sigma > 0) \). If \(|Du|_{N,\Lambda,\Omega} < +\infty \), then \(u \in BMO(\Omega) \).

Proof. For any \(Q \subset \Omega \) we have \(\|f\|_{L_A(Q)} < +\infty \) and therefore (see [BFS] lemma 3; see also [G])

\[\lim_{\epsilon \to 0^+} \left(e^{\epsilon} \int_Q |Du|^{N-\epsilon} \, dx \right)^{\frac{1}{N-\epsilon}} = 0 \]

from which

\[\sup_{0 < \epsilon \leq 1} \left(e^{\epsilon} \int_Q |Du|^{N-\epsilon} \, dx \right)^{\frac{1}{N-\epsilon}} < +\infty \quad \forall Q \subset \Omega. \]

We have

\[\sup_{Q \subset \Omega} \left(e^{\epsilon} \int_Q |Du|^{N-\epsilon} \, dx \right)^{\frac{1}{N-\epsilon}} \]

\[\leq \sup_{Q \subset \Omega} \left(e^{\epsilon} \int_Q |Du|^{N-\epsilon} \, dx \right)^{\frac{1}{N-\epsilon}} \]

\[\leq c(N, \sigma) \sup_{Q \subset \Omega} |Q| \|Du\|_{L_A(Q)} \]

\[= c(N, \sigma) |Du|_{A,\Omega} < +\infty \]
and therefore by Theorem 3.3 the assertion follows.

By Corollary 3.4, the function \(f \) of Example 3.1 is such that \(|Df|_{N,A,N} = +\infty \). This fact could be also verified directly, by proving that
\[
|B_j|^{\frac{1}{N}} \sup_{0<\epsilon \leq 1} \left(\epsilon \int_{B_j} |Dh_j|^{N-\epsilon} \, dx \right)^{\frac{1}{N-\epsilon}} = c(N) a_j \quad \forall j \in \mathbb{N}.
\]

Let us note also that the BMO function \(u(x) = \log |x| \cdot (|x| \leq 1) \) verifies the condition (3.5), and is such that \(u \not\in L^\infty, \sum |D u| \not\in L^N \).

We remark that by using the same arguments to prove Theorem 2.1 it is possible to give an alternative proof of a well-known result by Adams [A] (see Corollary 4.2) about the Riesz Potential Operator defined by
\[
I_{\frac{p}{p-1}} f = \int_{\Omega} \frac{|x-y|^{N-p}}{|x-y|^{p-1}} f(y) \, dy.
\]

Theorem 3.5. Let \(1 < p < +\infty, \sigma > 0 \) if \(f \in L^p_0(\Omega) \), then \(I_{\frac{p}{p-1}} f \in EXP_{\frac{p}{p-1}+\sigma}(\Omega) \).

Proof. Let us start again from the inequality
\[
||I_{\frac{p}{p-1}} f||_q \leq q^{\frac{1}{q} - 1} \cdot q^{\frac{1}{q} - 1} \cdot \omega_N^{\frac{1}{q} - 1} \cdot |\Omega|^{\frac{1}{q} - 1} \cdot ||f||_{p-\epsilon} \quad \forall q \geq p, \quad \forall 0 < \epsilon \leq 1.
\]

We have
\[
e^{\sigma \epsilon^{\frac{p}{p-1}}} ||I_{\frac{p}{p-1}} f||_q \leq q^{\frac{1}{q} - 1} \cdot q^{\frac{1}{q} - 1} \cdot \omega_N^{\frac{1}{q} - 1} \cdot |\Omega|^{\frac{1}{q} - 1} \cdot \epsilon^{\sigma \epsilon^{\frac{p}{p-1}}} ||f||_{p-\epsilon} \leq q^{\frac{1}{q} - 1} \cdot q^{\frac{1}{q} - 1} \cdot \omega_N^{\frac{1}{q} - 1} \cdot |\Omega|^{\frac{1}{q} - 1} \cdot ||f||_{L^p}^{\frac{1}{p}}
\]

and therefore
\[
\sup_{0<\epsilon \leq 1} \left(\epsilon \int_{\Omega} \left(\frac{I_{\frac{p}{p-1}} f}{||f||_p} \right)^{\frac{1}{q}} \, dx \right)^{\frac{1}{q}} < c(n)
\]

from which the assertion follows.
Corollary 3.6. Let \(1 < p < +\infty \). There exist constant \(c_0 = c_0(N) \), \(c_1 = c_1(N,p) \) such that for any \(f \in L^p(\Omega) \) the following inequality holds:

\[
\int_{\Omega} \exp \left(\frac{|I_p f|}{c_0 \|f\|_p} \right) dx \leq c_1
\]

Applying to the Theorem 3.5 the same density argument as in [CS], if a function \(f \) is in the closure of \(L^\infty(\Omega) \) of \(L^p(\Omega) \) then the image of \(f \) by the linear continuous operator \(I_p \) must be in the closure of \(L^\infty(\Omega) \) of \(EXP_{p-\sigma}^\infty(\Omega) \), therefore we have also the following

Corollary 3.7. Let \(1 < p < +\infty \), \(\sigma > 0 \). If \(f \in \Sigma^p(\Omega) \), then \(I_p f \in EXP_{p-\sigma}^\infty(\Omega) \)

We remark that, in the same way, as a corollary of Theorem 3.5, we get that if \(f \in L^p(\Omega) \), then \(I_p f \in EXP_{p-\sigma}^\infty(\Omega) \).

References

Alberto Fiorenza

Alberto Fiorenza,
Dipartimento di Matematica e Applicazioni,
"R. Caccioppoli",
Via Cintia,
80126 Napoli,
Italy
e-mail: fiorenza@matna2.dma.unima.it

Recibido: 14 de Abril de 1997
Revisado: 3 de Diciembre de 1997