Topological real algebraic T-surfaces.

Iliya ITENBERG

Abstract

The paper is devoted to algebraic surfaces which can be obtained using a simple combinatorial procedure called the T-construction. The class of T-surfaces is sufficiently rich: for example, we construct T-surfaces of an arbitrary degree in $\mathbb{R}P^3$ which are M-surfaces. We also present a construction of T-surfaces in $\mathbb{R}P^3$ with $\dim H_1(\mathbb{R}X; \mathbb{Z}/2) > h^{1,1}(\mathbb{C}X)$, where $\mathbb{R}X$ and $\mathbb{C}X$ are the real and the complex point sets of the surface.

1 Introduction

The subject of the paper is T-surfaces, i.e., real algebraic surfaces which can be constructed in a simple combinatorial fashion: one can patchwork them from the pieces which essentially are planes.

The construction of combinatorial patchworking (or T-construction) works in any dimension. We restrict ourselves here by the case of surfaces. The general T-construction can be formulated in a completely similar way (the combinatorial patchwork construction in the case of curves is described in [I-V], [I1], [I2]). The T-construction is a particular case of the Viro theorem (see [V2], [V3], [V5], [V6], [R1]).

The results on topology of T-surfaces presented in the paper are concentrated around the following conjecture proposed by O. Viro ([V4]): let X be a nonsingular simply connected compact complex surface with
an antiholomorphic involution $c : X \to X$; then $\dim H_1(\mathbb{R}X; \mathbb{Z}/2) \leq h^{1,1}(X)$, where $\mathbb{R}X$ is the fixed point set of the involution c (for a detailed information on real algebraic surfaces see [Kh], [Si], [Wi]).

This conjecture is related to the Ragsdale conjecture (see [Ra]) concerning the topology of real algebraic curves. To formulate the Ragsdale conjecture, let us denote the number of even ovals of a nonsingular real algebraic plane projective curve of degree $2k$ by p (an oval of a nonsingular curve of an even degree is called even (resp. odd), if it lies inside of even (resp. odd) number of other ovals of this curve), and denote the number of odd ovals by n.

Ragsdale conjecture. For a nonsingular real algebraic plane projective curve of degree $2k$

$$p \leq \frac{3k^2 - 3k + 2}{2}, \quad n \leq \frac{3k^2 - 3k}{2}.$$

Any counter-example to the inequality $p \leq \frac{3k^2 - 3k + 2}{2}$ produces a counter-example to Viro's conjecture: one can take a double plane ramified along the complex point set of a counter-example to the Ragsdale conjecture with an appropriate choice of a lifting of the involution of complex conjugation. Thus, the counter-examples to Ragsdale conjecture obtained in [11] (see, also, [12], [I-V]) show that Viro's conjecture is not true. The counter-examples to Ragsdale conjecture are constructed as T-curves. So, it is natural to try to use the combinatorial patchwork construction in order to construct counter-examples to Viro's conjecture which are real algebraic surfaces in $\mathbb{R}P^3$.

We show in sections 3 and 4 that under some conditions of "maximality" of the triangulation participating in the combinatorial patchwork construction, Viro's conjecture is true for the resulting T-surfaces. However, using a "nonmaximal" triangulation (see exact definitions in section 2), we can obtain a T-surface X in $\mathbb{R}P^3$ with $\dim H_1(\mathbb{R}X; \mathbb{Z}/2) > h^{1,1}(\text{CX})$ (see section 6).

We also construct T-surfaces of any degree in $\mathbb{R}P^3$ which are M-surfaces (it means that the total $\mathbb{Z}/2$-homology group of the real point set has the same rank as that of the complexification; see section 5).

I would like to thank V. Kharlamov and O. Viro for the useful discussions.
2 T-construction

Let m be a positive integer number (it would be the degree of the surface under construction) and T be the tetrahedron in \mathbb{R}^3 with vertices $(0,0,0), (0,0,m), (0,m,0), (m,0,0)$. Let us take a triangulation τ of T with vertices having integer coordinates. Suppose that a distribution of signs at the vertices of τ is given. The sign (plus or minus) at the vertex with coordinates (i,j,l) is denoted by $\delta_{i,j,l}$.

Take the copies $T_x = s_x(T)$, $T_y = s_y(T)$, $T_z = s_z(T)$ $T_{xy} = s_x s_y(T)$, $T_{xz} = s_x s_z(T)$, $T_{yz} = s_y s_z(T)$, $T_{xyz} = s_x s_y s_z(T)$ of T, where s_x, s_y, s_z are reflections with respect to the coordinate planes. Denote by T_{\ast} the octahedron $T \cup T_x \cup T_y \cup T_z \cup T_{xy} \cup T_{xz} \cup T_{yz} \cup T_{xyz}$.

Extend the triangulation τ to a symmetric triangulation of T_{\ast}, and the distribution of signs $\delta_{i,j,l}$ to a distribution at the vertices of the extended triangulation by the following rule: passing from a vertex to its mirror image with respect to a coordinate plane we preserve its sign if the distance from the vertex to the plane is even, and change the sign if the distance is odd.

If a tetrahedron of the triangulation of T_{\ast} has vertices of different signs, select a piece of the plane (triangle or quadrangle) being the convex hull of the middle points of the edges having endpoints of opposite signs. Denote by S the union of the selected pieces. It is a piecewise-linear surface contained in T_{\ast}. Glue by $s_x s_y s_z$ the facets of T_{\ast}. The resulting space \tilde{T} is homeomorphic to the real projective space \mathbb{RP}^3. Denote by S the image of S in \tilde{T}.

Let us introduce an additional assumption: the triangulation τ of T is convex. This means that there exists a convex piecewise-linear function $\nu : T \rightarrow \mathbb{R}$ whose domains of linearity coincide with the tetrahedra of τ. Sometimes, such triangulations are also called coherent (see [GKZ]) or regular (see [Zi]).

Theorem 2.1 (O. Viro). Under the assumptions made above on the triangulation τ of T, there exist a nonsingular real algebraic surface X
of degree m in $\mathbb{R} P^3$ and a homeomorphism $\mathbb{R} P^3 \rightarrow \tilde{T}$ mapping the set of real points $\mathbb{R} X$ of X onto \tilde{S}.

Moreover, a polynomial defining the surface X can be written down explicitly: if t is positive and sufficiently small, the polynomial

$$
\sum_{(i,j,l) \in V} \delta_{i,j,l} x_0^{i} x_1^{j} x_2^{l} x_3^{m-i-j-l} t^{(i,j,l)}
$$

(where V is the set of vertices of τ) defines a surface with the properties described in Theorem 2.1.

We consider two special types of triangulations of T. A triangulation τ of T is called primitive if all the tetrahedra of τ are of volume $1/6$. A T-surface constructed using a primitive triangulation is called primitive.

A triangulation τ' of T is called maximal if all the integer points of T are vertices of τ'. Clearly, any primitive triangulation is maximal. The notions of primitive and maximal triangulations coincide in dimension 2. The situation is different in dimension 3: there exist maximal triangulations of T which are not primitive.

3 Euler characteristic of T-surface

Let us consider a k-dimensional simplex Q having vertices with integer coordinates and belonging to the orthant $\{x_i \geq 0\}$ of \mathbb{R}^n. We call the simplex Q elementary if the reductions modulo 2 of the vertices of Q are independent (generate an affine space of dimension k over $\mathbb{Z}/2$).

Suppose that a distribution of signs at the vertices of the simplex Q is given. Let us take the distributions of signs at the vertices of the symmetric copies of Q using the following generalization of the rule formulated in section 2:

the symmetric copy of a vertex a in an orthant b gets the sign $(-1)^a \tilde{b} \text{sign}(a)$, where \tilde{a} is the reduction modulo 2 of the vertex a; the i-th coordinate of the vector \tilde{b} in $(\mathbb{Z}/2)^n$ is equal to 0 (resp. to 1) if $x_i > 0$ (resp. $x_i < 0$) for a point (x_1, \ldots, x_n) in the interior of the orthant b; and $\tilde{a} \cdot \tilde{b}$ denotes the standard scalar product of two vectors in $(\mathbb{Z}/2)^n$.

We call a symmetric copy of Q nonempty if it has vertices of different signs.
Proposition 3.1. If the simplex Q is elementary and does not belong to a coordinate hyperplane, then Q has exactly $2^n - 2^{n-k}$ nonempty symmetric copies.

Proof. Let us, first, remark that the map $\bar{a} \mapsto \bar{a} \cdot \bar{b}$ is linear over $\mathbb{Z}/2$. The following operations do not change the property of any symmetric copy of Q to be nonempty:

1. parallel translation of Q,
2. changing of signs at all the vertices of Q.

Thus, we can suppose that the reduction \bar{v}_0 modulo 2 of a vertex v_0 of Q is 0 in $(\mathbb{Z}/2)^n$, and that the vertex v_0 has the sign $"+"$. Denote the other vertices of Q and their reductions modulo 2 by v_1, \ldots, v_k and $\bar{v}_1, \ldots, \bar{v}_k$, respectively. The condition that the copy of Q in an orthant b is empty (i.e. is not nonempty) can be expressed by a system of linear equations

$$\bar{v}_1 \cdot \bar{b} = \varepsilon_1, \ldots, \bar{v}_k \cdot \bar{b} = \varepsilon_k,$$

where $\varepsilon_i = 0$ if the sign of the vertex v_i is positive, and $\varepsilon_i = 1$ if the sign of v_i is negative. The unknowns of the system are the coordinates of \bar{b}. A solution to the system does exist because the rank of the system is equal to k (the simplex Q is elementary). Moreover, the dimension of the space of solutions is equal to $n - k$. It means that the number of solutions is equal to 2^{n-k}, in other words, the simplex Q has exactly $2^n - 2^{n-k}$ nonempty copies.

Proposition 3.1 is similar to Lemma 1 in [I-R].

Now we are able to calculate the Euler characteristic of a primitive T-surface.

Theorem 3.2. If X is a primitive T-surface in $\mathbb{R}P^3$, then the Euler characteristic $\chi(\mathbb{R}X)$ of the real point set of X is equal to the signature $\sigma(CX)$ of the complex point set of X. In other words, if X is a primitive T-surface of degree m in $\mathbb{R}P^3$, then

$$\chi(\mathbb{R}X) = -\frac{m^3}{3} + \frac{4m}{3}.$$
Proof. Let us take an arbitrary primitive triangulation τ of the tetrahedron T and an arbitrary distribution of signs at the integer points of T. The piecewise-linear surface \tilde{S} has a natural cell subdivision: each cell is the intersection of \tilde{S} with a simplex of the triangulation of T.

All the simplices of τ are elementary. The number of simplices of τ of any dimension is fixed (the number of simplices of any dimension contained in each face of T is also fixed). Thus, we can calculate the Euler characteristic of \tilde{S} according to Proposition 3.1.

The triangulation τ contains

- m^3 tetrahedra,
- $2m^3 + 2m^2$ triangles, and $4m^2$ of them are contained in the facets of T,
- $7m^3/6 + 3m^2 + 11m/6$ edges, $6m^2$ of them are contained in the facets of T, and $6m$ of them are contained in the edges of T,
- $(m + 1)(m + 2)(m + 3)/6$ vertices.

We obtain that the described cell subdivision of \tilde{S} contains $7m^3$ two-dimensional cells, $12m^3$ edges and $14m^3/3 + 4m/3$ vertices. Thus,

$$\chi(\mathbf{R}X) = -\frac{m^3}{3} + \frac{4m}{3} = \sigma(CX).$$

Theorem 3.3. If X is a T-surface constructed using a maximal triangulation of the tetrahedron T, then $\chi(\mathbf{R}X) \geq \sigma(CX)$.

Proof. Let us, first, remark that all simplices of dimension ≤ 2 of a maximal triangulation τ' of T are elementary. Denote by q the number of tetrahedra of τ'. If any tetrahedron of τ' is elementary than, repeating the calculation of the proof of Theorem 3.2, we obtain $\chi(\tilde{S}) = 2m^3/3 - q + 4m/3$.

Each nonelementary tetrahedron of τ' has at least 6 nonempty copies, because the rank of the corresponding system of linear equations (see the proof of Proposition 3.1) is equal to 2. Thus,

$$\chi(\mathbf{R}X) = \chi(\tilde{S}) \geq \frac{2m^3}{3} - q + \frac{4m}{3} - q'.$$
where \(q' \) is the number of nonelementary tetrahedra of \(\tau' \). It remains to remark that \(q + q' \leq m^3 \), and we obtain

\[
\chi(RX) \geq -\frac{m^3}{3} + \frac{4m}{3} = \sigma(CX).
\]

4 Case of primitive or maximal triangulation

As we saw in section 3, the Euler characteristic of a primitive T-surface in \(\mathbb{R}P^3 \) is determined by the degree and is equal to the signature \(\sigma(CX) \) of the complex point set of the surface.

For a real algebraic surface \(X \) (or, more generally, for a real algebraic variety of any dimension), we have Smith inequality (see, for example, [Wi]):

\[
b_4(RX) \leq b_4(CX)
\]

between the ranks of total \(\mathbb{Z}/2 \)-homology groups of the real and of the complex point sets of \(X \). If \(b_4(RX) = b_4(CX) \), the surface \(X \) is called an M-surface. We denote by \(b_i(Y) \) the rank of \(i \)-th homology group of \(Y \) with \(\mathbb{Z}/2 \)-coefficients.

Let us mention two congruences (see [Wi]).

Rokhlin congruence. If \(X \) is an M-surface, then

\[
\chi(RX) \equiv \sigma(CX) \mod 16.
\]

Kharlamov-Gudkov-Krahnov congruence. If \(X \) is an (M-1)-surface (in other words, if \(b_4(RX) = b_4(CX) - 2 \)), then

\[
\chi(RX) \equiv \sigma(CX) \pm 2 \mod 16.
\]

Rokhlin congruence and Theorem 3.2 show that we can expect to construct primitive T-surfaces which are M-surfaces. We will see in section 5 that such surfaces do really exist in any degree. On the other hand, there are no (M-1)-surfaces among primitive T-surfaces in \(\mathbb{R}P^3 \) according to Kharlamov-Gudkov-Krahnov congruence and Theorem 3.2.
Theorem 4.1. If X is a primitive T-surface in \mathbb{RP}^3 then

$$b_1(\mathbb{RX}) \leq h^{1,1}(CX), \quad b_0(\mathbb{RX}) \leq h^{2,0}(CX) + 1.$$

Remarks. Theorem 4.1 states that Viro's conjecture holds in the case of primitive T-surfaces.

The inequality $b_0(\mathbb{RX}) \leq h^{2,0}(CX) + 1$ for primitive T-surfaces was proved by E. Shustin in [Sh].

Proof of Theorem 4.1. Using the Smith inequality

$$b_*(\mathbb{RX}) \leq b_*(CX) = m^3 - 4m^2 + 6m$$

(where m is the degree of X) and the equality

$$\chi(\mathbb{RX}) = \sigma(CX) = \frac{m^3}{3} - \frac{4m}{3} + \frac{21}{6}$$

proved in Theorem 3.2, we immediately obtain

$$b_1(\mathbb{RX}) \leq h^{1,1}(CX) = \frac{2m^3}{3} - 2m^2 + 7m$$

and

$$b_0(\mathbb{RX}) \leq h^{2,0}(CX) + 1 = \frac{m^3}{6} - m^2 + \frac{11m}{6}.$$

Viro's conjecture also holds in the case of T-surfaces constructed using maximal triangulations.

Theorem 4.2. If X is a T-surface constructed using a maximal triangulation of the tetrahedron T, then

$$b_1(\mathbb{RX}) \leq h^{1,1}(CX).$$

Proof. The Smith inequality and the inequality $\chi(\mathbb{RX}) \geq \sigma(CX)$ proved in Theorem 3.3, give again the desired inequality

$$b_1(\mathbb{RX}) \leq h^{1,1}(CX).$$
5 M-surfaces

We describe, first, a special primitive triangulation \(\rho \) of \(T \) suggested by O. Viro. We show that the T-construction using the triangulation \(\rho \) and an appropriate distribution of signs at the integer points of \(T \) gives an M-surface of degree \(m \) in \(\mathbb{R}P^3 \). In fact, the surfaces given by the procedure described below are homeomorphic to ones constructed (not as T-surfaces) by O. Viro in [V1].

Let us divide the tetrahedron \(T \) by the planes \(z = l \), and denote by \(P_l \) the polytope

\[
\{(x, y, z) \in T : l \leq z \leq l+1, \quad l = 0, \ldots, m-1\}.
\]

Choose an arbitrary primitive convex triangulation of each triangle

\[
T_l = T \cap \{z = l\}, \quad l = 0, \ldots, m-1
\]

(a triangulation of the triangle \(T_l \) is called primitive if all its triangles are of area \(1/2 \), or, equivalently, if all the integer points of \(T_l \) are vertices of the triangulation).

Each polytope \(P_l \) is triangulated as follows. If \(l \) is even, take the join \(J_l \) of the side of \(T_l \) lying in the \(xz \)-coordinate plane and of the side of \(T_{l+1} \) lying in the plane \(x + y + z = m \). If \(l \) is odd, take as \(J_l \) the join of the side of \(T_l \) lying in the plane \(x + y + z = m \) and of the side of \(T_{l+1} \) lying in the \(xz \)-coordinate plane. The join \(J_l \) is naturally triangulated into the joins of segments

\[
[(i, 0, l), (i+1, 0, l)], \quad [(m-(l+1)-j, j, l+1), (m-(l+1)-(j+1), j+1, l+1)],
\]

\[
i = 0, \ldots, m-l-1, \quad j = 0, \ldots, m-l-2
\]

if \(l \) is even, and \(J_l \) is triangulated into the joins of segments

\[
[(m-l-j, j, l), (m-l-(j+1), j+1, l)], \quad [(i, 0, l+1), (i+1, 0, l+1)],
\]

\[
i = 0, \ldots, m-l-2, \quad j = 0, \ldots, m-l-1
\]

if \(l \) is odd.

The polytope \(P_l \) is the union of \(J_l \) and of two tetrahedra \(P_l^{(1)} \) and \(P_l^{(2)} \). These tetrahedra can be triangulated into the cones over the triangles of the chosen triangulations of \(T_l \) and of \(T_{l+1} \).
Clearly, the described triangulation ρ of T is primitive. To explain that ρ is convex, consider a triangulation of T formed by the tetrahedra $J_l, P_i^{(1)}, P_i^{(2)}$ \((l = 0, \ldots, m - 1)\).

The later triangulation is convex. Let $\nu' : T \to \mathbb{R}$ be a convex function certifying the convexity of this triangulation, and let $\nu_l : T_l \to \mathbb{R}$ \((l = 0, \ldots, m - 1)\) be a convex function certifying that the chosen triangulation of T_l is convex. Consider a piecewise-linear function $\nu : T \to \mathbb{R}$ which is linear on each tetrahedron of ρ and takes the value $\nu'(r_l) + \varepsilon \nu_l(r_l)$ at an integer point r_l of T_l. It is easy to see that the function ν for a positive sufficiently small ε certifies the convexity of ρ.

Choose the following distribution of signs at the integer points of T:

- A point \((i, j, l)\) gets the sign "+" if $i \equiv j \equiv l \equiv 0 \mod 2$ or $l \equiv 1 \mod 2$ and $ij \equiv 0 \mod 2$;
- and it gets the sign "-" otherwise.

Proposition 5.1. A T-surface X constructed using the triangulation ρ and the distribution of signs described is an M-surface. The real point set RX of X is homeomorphic to the disjoint union of $\frac{m^2}{6} - m^2 + \frac{11m}{6} - 1$ spheres and a sphere with $\frac{m^2}{3} - m^2 + \frac{7m}{6}$ handles if m is even or a projective plane with $\frac{m^2}{3} - m^2 + \frac{7m-3}{6}$ handles if m is odd.

Proof. It is easy to verify that any integer point r lying strongly inside T has a symmetric copy $s(r)$ with the following property: all the neighbouring vertices of $s(r)$ (i.e. vertices connected with $s(r)$ by an edge of the triangulation) have the same sign, and this sign is opposite to the sign of $s(r)$. It means that the surface \tilde{S} has a connected component homeomorphic to a sphere contained in the star of $s(r)$.

We found $\frac{m^3}{6} - m^2 + \frac{11m}{6} - 1 = h_{2,0}^0(CX)$ components of \tilde{S}. There is at least one component of \tilde{S} more, because the surface \tilde{S} intersects the coordinate planes. On the other hand, according to Theorem 4.1, the number of connected components of RX does not exceed $h_{2,0}^0(CX) + 1$. Thus, the real point set RX has exactly $h_{2,0}^0(CX) + 1$ connected components.
Using the equalities

\[\chi(RX) = \sigma(CX), \quad b_0(RX) = h^{2,0}(CX) + 1, \]

we get \(b_*(RX) = b_*(CX) \), i.e. \(X \) is an \(M \)-surface. Furthermore,

\[b_1(RX) = h^{1,1}(CX), \]

and, thus, the topological type of \(RX \) coincides with one described in the statement of Proposition.

6 Counter-examples to Viro’s conjecture

We saw in section 4 that Viro’s conjecture is true for \(T \)-surfaces constructed using a maximal triangulation. Surprisingly enough, a non-maximal triangulation of \(T \) can produce a \(T \)-surface \(X \) in \(\mathbb{R}P^3 \) with \(b_1(RX) > h^{1,1}(CX) \).

Let us describe, first, the construction of an extension of a triangulation of the triangle \(T_0 = T \cap \{ z = 0 \} \).

Suppose that \(m \) is even and that a primitive triangulation \(\tau_0 \) of \(T_0 \) with the vertices having integer coordinates is given. Divide the tetrahedron \(T \) into two parts \(T \cap \{ z \geq 2 \} \) and \(T \cap \{ z \leq 2 \} \) by the plane \(z = 2 \). Take in the first part the triangulation coinciding with the triangulation \(\rho \) described in the construction of \(M \)-surfaces.

Divide now the second part \(T \cap \{ z \leq 2 \} \) by the plane \(x + y + kz = m \) (where \(m = 2k \)) into the tetrahedron \(\overline{T} \) with vertices \((0,0,0), (m,0,0), (0,m,0), (0,0,2) \) and the cone \(C \) with the vertex \((0,0,2) \) over

\[\{(x,y,z) \in T : x + y + z = m, \; 0 \leq z \leq 2 \} \]
(see Figure 1).

To triangulate the tetrahedron \hat{T}, we take the cones over all the triangles of τ_0, and subdivide (in the unique possible way) the cones containing integer points of the plane $z = 1$ in order to obtain a maximal triangulation of \hat{T}.

To describe the triangulation of the cone C, let us consider the cone \hat{C} with the vertex $(k+1,0,1)$ over the triangle $T \cap \{x + y + kz = m\}$. The rest of the cone C is divided into two parts by the plane $z = 1$ (see Figure 2). Denote the lower part (contained in $C \cap \{0 \leq z \leq 1\}$) by C_0, ...
and denote the upper part (contained in \(C \cap \{1 \leq z \leq 2\} \)) by \(C_1 \).

\[
\begin{align*}
\text{Figure 2}
\end{align*}
\]

The triangulation of the triangle \(T \cap \{x + y + kz = m\} \) is already fixed (it comes from the triangulation of \(T \)). Thus, we can triangulate the cone \(C \) by the cones with the vertex \((k + 1, 0, 1)\) over the triangles of the triangulation of \(T \cap \{x + y + kz = m\} \).

Subdivide \(C_0 \) taking the cone \(C' \) with the vertex \((0, m, 0)\) over the facet of \(C_0 \) belonging to the plane \(z = 1 \), and the join \(J' \) of segments \([(m, 0, 0), (0, m, 0)] \) and \([(k + 1, 0, 1), (m - 1, 0, 1)] \). Let us choose an arbitrary primitive convex triangulation of the quadrangle \(C_0 \cap \{ z = 1 \} \). It gives a natural primitive triangulation of \(C' \) (taking the cones over the triangles of the chosen triangulation of \(C_0 \cap \{ z = 1 \} \)). The join \(J' \) is triangulated by the joins of segments \([(m - j, j, 0), (m - j - 1, j + 1, 0)] \) and \([(i, 0, 1), (i + 1, 0, 1)] \) (where \(i = k + 1, \ldots, m - 2 \); \(j = 0, \ldots, m - 1 \)).

It remains to triangulate the part \(C_1 \). Subdivide \(C_1 \) into the join of segments \([(m - 1, 0, 1), (0, m - 1, 1)] \) and \([(0, 0, 2), (m - 2, 0, 2)] \) (triangulated by the joins of segments \([(m - j - 1, j, 1), (m - j - 2, j + 1, 1)] \).
and \([(i, 0, 2), (i + 1, 0, 2)]\), where \(i = 0, \ldots, m - 3\); \(j = 0, \ldots, m - 2\)
and the naturally triangulated cones: with the vertex \((0, 0, 2)\) (resp. \((0, m - 1, 1)\)) over the quadrangle \(C_1 \cap \{z = 1\}\) (resp. over the triangle \(T_2 = T \cap \{z = 2\}\)).

The described maximal triangulation of \(T\) is called the extension of the triangulation \(\tau_0\) and is denoted by \(\text{ext}(\tau_0)\).

Arguments, similar to ones used in the previous section to show that the triangulation \(\tau\) is convex, prove that if \(\tau_0\) is convex then \(\text{ext}(\tau_0)\) is also convex. Almost all tetrahedra of \(\text{ext}(\tau_0)\) are of volume \(1/6\). The only tetrahedra of a greater volume (more precisely, of volume \(1/3\)) are the cones with the vertex \((0, 0, 2)\) over the odd triangles of \(\tau_0\) (we call a triangle of \(\tau_0\) odd if it does not have a vertex with the both even coordinates).

Suppose now that a distribution \(\delta_0\) of signs at the integer points of \(T_0\) is given. Let us describe a distribution \(\text{ext}(\delta_0)\) of signs at the integer points of \(T\) which we call an extension of \(\delta_0\). In the part \(T \cap \{z \geq 2\}\) we take the distribution of signs described in the construction of \(M\)-surfaces. It remains, thus, to fix a distribution of signs at the integer points of \(T \cap \{z = 1\}\). We do it as follows:

- take an arbitrary distribution in \(T \cap \{z = 1\} \cap \{x + y < k\}\),
- all the integer points of the segment \([(k, 0, 1), (0, k, 1)]\) but the point \((0, k, 1)\) get the sign "-",
- for the other points of \(T_1\) we apply the rule: a point \((i, j, 1)\) gets the sign "-" if \(i\) and \(j\) are both odd, and the sign "+" otherwise.

Let us take a triangulation \(\tau_0^1\) and a distribution \(\delta_0^1\) of signs at the integer points of \(T_0^1\) producing a counter-example to Ragsdale conjecture with \(p = \frac{3k^2 - 3k + 2}{2} + 1\) (see [I1], [I2], [I-V]). The triangulation \(\tau_0^1\) can be obtained placing the hexagon \(H\) shown in Figure 3 inside of \(T_0\) (on suppose that \(m \geq 10\)) in such a way that the center of \(H\) has both the nonzero coordinates odd, and extending, then, the triangulation of \(H\) to a primitive convex triangulation of \(T_0\). To obtain a distribution of signs at the integer points of \(T_0\), we complete the distribution presented in Figure 3 by the rule:

- a point \((i, j, 0)\) gets the sign "-" if \(i\) and \(j\) are even, and \(i + j < m\),
a point \((i, j, 0)\) gets the sign "+" otherwise.

Remark that this distribution of signs at the integer points of \(T_0\) is slightly different from the distribution described in [I1], [I2], [I-V].

Figure 3

Proposition 6.1 The maximal triangulation \(\text{ext}(\tau_0^1)\) and a distribution
of signs \(\text{ext}(\delta_0) \) produce a \(T \)-surface \(X \) of degree \(m \) in \(\mathbb{R}P^3 \) with

\[
\chi(\mathcal{R}X) = -\frac{m^3}{3} + \frac{4m}{3}, \quad b_0(\mathcal{R}X) = h^{2,0}(\mathcal{C}X) - 2.
\]

The real point set \(\mathcal{R}X \) of \(X \) is homeomorphic to the disjoint union

\[
\left(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 5 \right) S^2 \bigsqcup S_2 \bigsqcup S_{\frac{m^3}{3} - m^2 + \frac{2m}{6} - 5}
\]

of \(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 5 \) spheres, a sphere with 2 handles and a sphere with \(\frac{m^3}{3} - m^2 + \frac{2m}{6} - 5 \) handles.

Proof. Let us, first, calculate \(\chi(\mathcal{R}X) \). It was already remarked that almost all tetrahedra of \(\text{ext}(\delta_0^1) \) are of volume 1/6. The only tetrahedra of greater volume (of volume 1/3) are the cones over the odd triangles of \(\delta_0^1 \). Each of these tetrahedra of volume 1/3 has 6 nonempty symmetric copies (a tetrahedron of volume 1/3 of a maximal triangulation has 6 nonempty copies if the product of signs at its vertices is positive, and it has 8 nonempty copies if the product of signs is negative). Thus, the arguments of the proof of Theorems 3.2 and 3.3 show that \(\chi(\mathcal{R}X) = \sigma(\mathcal{C}X) \).

Calculate now the number of connected components of \(\tilde{S} \). Exactly as in the proof of Theorem 5.1, any integer point lying strongly inside \((T \cap \{z \geq 2\}) \cup \mathcal{C}\) has a symmetric copy with the star containing a component of \(\tilde{S} \) homeomorphic to a sphere. It is easy to see that the stars of integer points lying strongly inside \(T \) and belonging to the segment \([(k, 0, 1), (0, k, 1)]\) also contain the components of \(\tilde{S} \) homeomorphic to a sphere. Consider the integer points lying strongly inside the tetrahedron \(\tilde{T} \). Let us call *even interior points of \(T_0 \)* the integer points \((i, j, 0)\) such that \(i > 0, j > 0, i + j < m, i \) and \(j \) are both even. There is a correspondence between the even interior points of \(T_0 \) and the points of \(\text{Int}(\tilde{T}) \cap \mathbb{Z}^3 \): any integer point lying strongly inside \(\tilde{T} \) is a middle point of a segment joining the point \((0, 0, 2)\) and an even interior point of \(T_0 \). We denote the middle point of a segment \([(0, 0, 2), r]\) (where \(r \) is an even interior point of \(T_0 \)) by \(f(r) \).

Suppose that an even interior point \(r \) does not belong to the hexagon \(H \). Then \(r \) has the sign "\(m \)". If \(f(r) \) has also the sign "\(m \)", then the union
of stars of \(r \) and of \(f(r) \) (in the triangulation of \(T_+ \)) contains a component of \(\hat{S} \) homeomorphic to a sphere. If \(f(r) \) has the sign "+", then the union of stars of \(r \) and of \(s_+(f(r)) \) contains a component of \(\hat{S} \) homeomorphic to a sphere.

We have found \(h^{2,0}(CX) - 4 \) spheres of \(\hat{S} \) (a sphere was associated to any integer point lying strongly inside of \(T \) except 4 points of the form \(f(r) \), where \(r \) is an even interior point of \(T_0 \) belonging to the hexagon \(H \)). There are two connected components of \(\hat{S} \) more. One component is homeomorphic to a sphere with two handles and lies inside of \(\hat{H} \cup s_+(\hat{H}) \), where \(\hat{H} \) is a cone with the vertex \((0, 0, 2)\) over \(H \). The remaining part of \(\hat{S} \) is connected. The number \(b_1(\hat{S}) \) can be calculated via the Euler characteristic.

\[\text{Theorem 6.2. If } m \text{ is an even integer number not less than 10, then there exists on } (M-2)\text{-surface } X \text{ of degree } m \text{ in } \mathbb{R}P^3 \text{ such that } b_1(X) = h^{1,1}(CX) + 2. \]

\[\text{Proof. Let us take the triangulation } ext(\tau_0) \text{ of } T \text{ and the distribution of signs } ext(\delta_0) \text{ at the integer points of } T. \text{ According to Proposition 6.1 the resulting surface } \hat{S} \text{ is homeomorphic to} \]

\[\left(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 5 \right) S^2 \bigcup S_2 \bigcup S_{m^3 - m^2 + \frac{11m}{6} - 5}. \]

Remove now 4 vertices of the form \(f(r) \), where \(r \) is an even interior point of \(T_0 \) belonging to \(H \) (see the proof of Proposition 6.1), with all the adjacent edges. Denote the new triangulation (which is nonmaximal) by \(ext'(\tau_0) \) and consider the surface \(\hat{S}' \) constructed using \(ext'(\tau_0) \) and the restriction \(ext'(\delta_0) \) of the distribution \(ext(\delta_0) \) to the set of vertices of \(ext'(\tau_0) \). Clearly, the surface \(\hat{S}' \) is homeomorphic to

\[\left(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 5 \right) S^2 \bigcup S_2 \bigcup S_{m^3 - m^2 + \frac{11m}{6} - 1}. \]

because we added 4 handles to the component homeomorphic to
Thus, the number of $b_1(S')$ is equal to

$$\frac{2m^3}{3} - \frac{2m^2}{3} + \frac{7m}{3} + 2.$$

Using counter-examples of degree $2k$ to Ragsdale conjecture with more than $\frac{3k^2 - 3k + 2}{2} + 1$ even ovals (see [I1], [I2], [I-IV]), one can construct surfaces X of degree $2k$ in $\mathbb{R}P^3$ with $b_1(\mathbb{R}X) > h^{1,1}(\mathbb{C}X) + 2$.

Theorem 6.3. If $m = 2k$ is an even integer not less than 10, then there exists a surface X of degree m in $\mathbb{R}P^3$ such that

$$b_1(\mathbb{R}X) = h^{1,1}(\mathbb{C}X) + 2 \left\lfloor \frac{(k - 3)^2 + 4}{8} \right\rfloor$$

(where $\lfloor u \rfloor$ denotes the greatest integer which does not exceed u).

Proof. We start from a triangulation τ_0^δ and a distribution δ_0^τ of signs at the integer points of T_0 giving a counter-example to Ragsdale conjecture with

$$p = \frac{3k^2 - 3k + 2}{2} + a,$$

where $a = \left\lfloor \frac{(k - 3)^2 + 4}{8} \right\rfloor$ (see [I1], [I2], [I-IV]). The triangulation τ_0^δ can be obtained in the following way. Consider the partition of the triangle T_0 shown in Figure 4. Let us take in each shadowed hexagon the triangulation (and the signs) of the hexagon H. The triangulation of the union of the shadowed hexagons can be extended to a primitive convex triangulation τ_0^δ of T_0. To obtain the distribution δ_0^τ of signs at the integer points of T_0, we choose the signs outside of the union of the shadowed hexagons again using the rule:

- A point $(i, j, 0)$ gets the sign "-" if i and j are even, and $i + j < m$,
- A point $(i, j, 0)$ gets the sign "+" otherwise.
Consider the triangulation $ext(\tau_0)$ of T and the distribution $ext(\delta_0)$.
of signs at the integer points of T. The resulting surface \tilde{S} is homeomorphic to
\[
\left(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 1 - 4a\right) S^2 \coprod a S_2 \coprod S_{\frac{m^3}{3} - m^2 + \frac{7m}{6} - a}.
\]

Remove now the vertices of the triangulation $\text{ext}(\tau_0^S)$ (with adjacent edges) of the form $f(r)$, where r is an even interior point of T_0 belonging to one of the shadowed hexagons, and take the restriction $\text{ext}'(\delta_0^S)$ of the distribution $\text{ext}(\delta_0^S)$ to the vertices of the new triangulation $\text{ext}'(\tau_0^S)$. We obtain a surface S' homeomorphic to
\[
\left(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 1 - 4a\right) S^2 \coprod a S_2 \coprod S_{\frac{m^3}{3} - m^2 + \frac{7m}{6} - a}
\]
with
\[
b_1(S') = \frac{2m^3}{3} - 2m^2 + \frac{7m}{3} + 2a.
\]

Remarks.

1. Removing, if necessary, some of the shadowed hexagons in the construction of Theorem 6.3, we get counter-examples to Viro's conjecture with the real point set homeomorphic to
\[
\left(\frac{m^3}{6} - m^2 + \frac{11m}{6} - 1 - 4a\right) S^2 \coprod a S_2 \coprod S_{\frac{m^3}{3} - m^2 + \frac{7m}{6} - a},
\]
where $a = 1, \ldots, \left[\frac{(k-3)^2+4}{8}\right]$.

2. The counter-example of the smallest degree in $\mathbb{R}P^3$ given by Theorems 6.2 and 6.3 is a surface of degree 10. The real point set of this surface is homeomorphic to
\[
80S^2 \coprod S_2 \coprod S_{244}.
\]

It is unknown if there exist counter-examples of degree less than 10. The smallest degree we can expect for a counter-example to Viro's conjecture is degree 5.
3. Repeating the procedure described above for the new counter-examples to the Ragsdale conjecture constructed by B. Haas [Ha], one can construct surfaces X of degree $2k$ in $\mathbb{R}P^3$ with

$$b_1(\mathbb{R}X) = h^{1,1}(\mathbb{C}X) + 2a',$$

where $a' = \left\lfloor \frac{k^2 - 7k + 16}{8} \right\rfloor$.

4. We can obtain counter-examples to Viro’s conjecture which are asymptotically better than the examples described above: there exist T-surfaces X of degree $2k$ in $\mathbb{R}P^3$ with $b_1(\mathbb{R}X) = h^{1,1}(\mathbb{C}X) + 2A$, where $A = k^3/24 + \text{terms of smaller degrees}$. To construct such surfaces, we divide the tetrahedron T by the planes $z = 2i$ (where $i = 1, \ldots, k - 1$), and define a triangulation and a distribution of signs in each part of the subdivision using the procedure described in the proof of Theorem 6.3 for $T \cap \{0 \leq z \leq 2\}$.

References

Institut de Recherche Mathématique de Rennes, Campus de Beaulieu 35042 Rennes, Cedex France.

E-mail: ILIA.ITENBERG@UNIV-RENNES1.FR