Embedding of Real Varieties and their Subvarieties into Grassmannians

M.A. BUCHNER

ABSTRACT. Given a compact affine nonsingular real algebraic variety X and a nonsingular subvariety $Z \subset X$ belonging to a large class of subvarieties, we show how to embed X in a suitable Grassmannian so that Z becomes the transverse intersection of the zeros of a section of the tautological bundle on the Grassmannian.

In [2] Bochnak and Kucharz prove the following characterization of a compact nonsingular real affine hypersurface Z in a compact affine nonsingular real algebraic variety X: There is an algebraic embedding $f: X \to \mathbb{R}P^n$ (for some n) and a projective hyperplane $H \subset \mathbb{R}P^n$ transverse to $f(X)$ such that $H \cap f(X) = f(Z)$. This fact (or rather a closely related statement about strongly algebraic real line bundles) plays a crucial role in their construction of algebraic models Y of a compact, connected, smooth manifold M of dimensions $m \geq 3$ such that

 Supported by Nato Grant CRG 930238.
1991 Mathematics Subject Classification: 14P05
the algebraic homology elements in $H^1(Y, \mathbb{Z}/2) = H^1(M, \mathbb{Z}/2)$ form a prescribed subgroup $G \subset H^1(M, \mathbb{Z}/2)$. If we wish to extend this result to subgroups of $H^k(M, \mathbb{Z}/2)$ for $k > 1$ it seems desirable, as a first step, to extend the above characterization of hypersurfaces to subvarieties of higher codimension.

Let $G_{n,k}(R)$ denote the Grassmannian of k-planes in R^n. Let $\gamma_{n,k}$ denote the universal bundle over $G_{n,k}(R)$. For definitions and results concerning real varieties, strongly algebraic vector bundles etc. see [1].

Theorem 1. Let X be a compact affine nonsingular real algebraic variety. Let ζ be a strongly algebraic real vector bundle over X of rank k. Let σ be a regular section of ζ transverse to the zero section. Let $Z = \sigma^{-1}(0)$. Then

(i) There exists a regular embedding $f : X \to G_{n,k}(R)$ for suitable n such that ζ and $f^*(\gamma_{n,k})$ are isomorphic.

(ii) There exists a regular section s of $\gamma_{n,k}$ such that s is transversal to the zero section and $s^{-1}(0) \cap f(X) = f(Z)$ (the intersection $s^{-1}(0) \cap f(X)$ being transverse intersection).

Proof. We can assume that X is a subvariety of real projective q space $\mathbb{R}P^q$ for some q. By theorem 12.1.7 of [1] there is a regular map $g : X \to G_{\ell,k}(R)$ (for suitable ℓ) such that $g^*(\gamma_{\ell,k})$ and ζ are isomorphic. Let $G_{\ell,k}(C)$ denote the Grassmannian of complex k-planes in C^ℓ and $\gamma_{\ell,k}$ the corresponding universal complex bundle. Let X_C denote the complexification of X in CP^ℓ. Then g extends to a regular map $\tilde{g} : U \to G_{\ell,k}(C)$ where $U \subset X_C$ is a Zariski open set containing X. We can assume U and \tilde{g} are defined over R. By resolution of singularities we can find a complex nonsingular subvariety Y of some complex projective space CP^m with Y defined over R and a regular map (defined over R) $\tau : Y \to X_C$ where τ is the composition of a sequence of blowings-up with real centers outside U such that $\tilde{g} \circ \tau$ extends to a regular map on Y. Denote this extension by h. To simplify notation we identify X with $\tau^{-1}(X)$. Then $h^*(\gamma_{\ell,k})$ is a bundle defined over R and $h^*(\gamma_{\ell,k})|X$ is isomorphic to $\zeta \otimes C$.

Now, for $E \to M$ a holomorphic vector bundle of rank k over the compact complex manifold M, let $H^0(M, E)$ denote the space of holomorphic sections. Denote the dimension of $H^0(M, E)$ by n. Let
Embedding of Real Varieties and their Subvarieties...

\(i_E(x) = \{ \text{sections vanishing at } x \} \). Assume that each fiber of \(E \) is generated by global sections. Then identifying \(H^0(M, E) \) with \(\mathbb{C}^n \) we see that \(i_E \) maps \(M \) to \(G_{n,n-k}(C) \cong G_{n,k}(C) \). If \(F \to M \) is a positive holomorphic fiber bundle then for \(p \) sufficiently large \(i_{E \otimes F^p} \) is an embedding of \(M \) into \(G_{n,k}(C) \) where, now, \(n = \dim_{\mathbb{C}} H^0(M, E \otimes F^p) \) and \(i_{E \otimes F^p}^*(\gamma_{n,k}) \) is isomorphic to the bundle \(E \otimes F^p \to M \). Apply this to \(E \to M \) replaced by \(h^*(\gamma_{n,k}^C) \) (so \(M \) is replaced by \(Y \)) and \(F \) replaced by \(\gamma_{m,1}^C | Y \). In this case \(i_{E \otimes F^p} \) is a regular map defined over \(R \). Abbreviating \(i_{E \otimes F^p} \) by \(i \), we can write

\[i^*(\gamma_{n,k}^C) \cong h^*(\gamma_{n,k}^C) \otimes (\gamma_{m,1}^C | Y)^p \]

(as complex bundles). We now restrict both sides to \(X \) and obtain

\[(i|X)^*(\gamma_{n,k}) \otimes C \cong (\zeta \otimes C) \otimes ((\gamma_{m,1}|X) \otimes C)^p \]

and hence

\[(i|X)^*(\gamma_{n,k}) \cong \zeta \otimes (\gamma_{m,1}|X)^p . \]

We can assume \(p \) is even. Then \((\gamma_{m,1}|X)^p \) is topologically trivial. Hence \((i|X)^*(\gamma_{n,k}) \) is topologically and hence algebraically isomorphic to \(\zeta \). This completes the proof of (i) with \(f = i|X \).

To simplify notation we now identify \(X \) with \(f(X) \) and \(\zeta \) with \(\gamma_{n,k}|X \). Let \(s_1, \ldots, s_n \) be sections of \(\gamma_{n,k} \) (over \(G_{n,k}(R) \)) spanning the fiber at each point of \(G_{n,k}(R) \). Write \(\sigma = \Sigma \lambda_i(s_i|X) \) where \(\lambda_i \) are regular real-valued functions on \(X \). Let \(\bar{\lambda} \) be a regular extension of \(\lambda_i \) to \(G_{n,k}(R) \). Let \(\phi \) be a regular real-valued function on \(G_{n,k}(R) \) such that \(\phi^{-1}(0) = Z(= \sigma^{-1}(0)) \). For \(t = (t_1, \ldots, t_n) \), define \(\tau = \Sigma_{i=1}^n (\bar{\lambda}_i + t_i \phi^2) s_i \). We can find \(t \) (suitably small) so that \(\tau \) is transverse to the zero section, \(s_t^{-1}(0) \) is transverse to \(X \) and \(s_t^{-1}(0) \cap X = \sigma^{-1}(0)(= Z) \). This completes the proof of (ii).

References

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, New Mexico 87131

Recibido: 19 de Abril de 1994