Dunford-Pettis-like Properties of Continuous Vector Function Spaces

JESUS M.F. CASTILLO AND FERNANDO SANCHEZ

ABSTRACT. In this paper, the structure of some operator ideals \mathcal{A} defined on continuous function spaces is studied. Conditions are considered under which "$Te \mathcal{A}$" and "the representing measure of T takes values in \mathcal{A}" are equivalent for the scales of p-converging (C_p) and weakly-p-compact (W_p) operators. The scale C_p is intermediate between the ideals $C_p = \mathcal{U}$ (unconditionally summing operators), and $C_{\infty} = \mathcal{B}$ (completely continuous operators), which have been studied by several authors (Bombal, Cembranos, Rodríguez-Salinas, Saab). The dual scale W_p is intermediate between the ideals \mathcal{K} (compact operators) and $W_{\infty} = \mathcal{W}$ (weakly compact operators), and the results presented have a close connection with those of Diestel, Núñez and Seifert.

1. PRELIMINARIES

In this paper, $B(\Sigma, X)$ denotes the space of all bounded X-valued Σ-measurable functions; if $1 \leq p \leq \infty$, p^* denotes the conjugate number of p; if $p=1$, l_p, plays the role of c_0.

1.1. Definition. A sequence (x_n) in a Banach space X is said to be weakly-p-summable ($1 \leq p \leq \infty$) if $(x^* x_n) \in l_p$ for all $x^* \in X^*$, or equivalently, if there is a constant $C > 0$ such that
We shall denote by \(w_p((x_n)_n) \) the infimum of those constants \(C \).

We shall say that \((x_n) \) is weakly-p-convergent to \(x \in X \) if \((x_n-x) \) is weakly-p-summable. Weakly-\(\infty \)-convergent sequences are simply the weakly convergent sequences.

1.2. Definition. Let \(1 \leq p \leq \infty \). An operator \(T \in \mathcal{L}(X,Y) \) is said to be \(p \)-convergent if it transforms weakly-p-summable sequences into norm null sequences. We shall denote by \(C_p \) the class of \(p \)-convergent operators.

When \(p=\infty \) this definition gives the ideal \(B \) of completely continuous operators, that is to say, those transforming weakly null sequences into norm null sequences. When \(p=1 \), it is easy to verify that \(C_1=U \), the ideal of unconditionally summing operators, i.e., those transforming weakly-1-summable sequences into summable ones. Obviously \(C_q \subseteq C_p \) when \(p < q \).

The scale of \(C_p \) ideals are intermediate between the ideals \(B \) and \(U \). It is clear (from the definition) that \(C_p \) are injective operator ideals, and, since any separable Banach space is a quotient of \(l_p \), they are not surjective. On the other hand, it is easy to see that \(C_p \) is closed: let \((T_n) \) be a sequence of \(p \)-converging operators with limit (in the operator norm) \(T \). If \((x_n) \) is a weakly \(p \)-summable sequence and \(\varepsilon > 0 \), then \(\|Tx_n\|_p \leq \varepsilon \|x_n\| + \|T_0x_n\| \leq 2\varepsilon \) and \((Tx_n) \) is norm null.

1.3. Definition. A bounded set \(K \) in a Banach space is said to be relatively weakly-p-compact \((1 \leq p \leq \infty)\) if every sequence in \(K \) has a weakly-p-convergent sub-sequence. An operator \(T \in \mathcal{L}(X,Y) \) is said to be weakly-p-compact, \(1 \leq p \leq \infty \), if \(T(B) \) is relatively weakly-p-compact. We shall denote by \(W_p \) the ideal of weakly-p-compact operators.

The \(W_p \) operators are meant to be a gradations of the class of weakly
compact operators. It is clear that $W_w=W$ (weakly compact operators), and it is easy to see that $id(X)\in W_1$ if and only if X is finite dimensional. Obviously $W_p\subseteq W_q$ when $p<q$.

The ideals W_p are injective and surjective but not closed. The ideal W_1 is not closed since $W_1\neq W^2=K$, the ideal of compact operator (see [14]). To see W_p is not closed for $p>1$, we apply [14, Prop. 1.6] to the diagram:

\[
\begin{array}{ccc}
l_p & \rightarrow & l_1 \\
\downarrow & & \downarrow \\
l_p & & l_q
\end{array}
\]

for $1<p<r<q$. The left arrow is the identity and the right arrow is the inclusion, which belongs to W_q. If this operator ideal was closed, the middle inclusion should also be in W_{q^*}, which is not, since $C_p W_p=K$ and W_p.

1.4. Proposition. Let $1<p<\infty$, then $id (l_p)\in W_{p^*}$.

Proof. Let (x_n) be a bounded sequence in l_p. It admits a weakly convergent sub-sequence (x_{n_k}). Let x be its weak limit, and let us call $y_n=x_n-x$. If (y_n) is norm null, we have finished. If not, and we have $\|y_n\|\geq \varepsilon>0$ for some sub-sequence, applying the Bessaga-Pelczynski selection principle, we obtain a new sub-sequence, equivalent to the canonical basis (e_a) of l_p, which is weakly p^*-summable.

An easy consequence is:

1.5. Proposition. $\mathcal{U}(l_p,X)=K(l_p,X)$ if and only if $id(X)\in C_p$.

Moreover, an operator T belongs to $C_p(X,Y)$ if and only if for each $j\in \mathcal{U}(l_p,X)$ the composition $T\circ j$ is compact. From this and the proof of (2.5) we obtain

1.6. Proposition. If $T\in W_p(X,Y)$ then $T^*\in C_r(Y^*,X^*)$ for all $r<p^*$.
1.7. Corollary. Let $1 < p < \infty$, $\text{id}(l_p) \subseteq C_r$ for all $r < p^\ast$.

Remarks.

1. The progression expressed by (1.7) suddenly breaks down when $p < 1$, due to [17], where it is shown that a weakly-1-summable sequence (x_n) exists in each l_p, $p < 1$, for which $\|x_n\| \to +\infty$.

2. Regarding Proposition 1.5, this result is equivalently to Pitt's lemma: $\mathcal{L}(l_p, l_q) = K(l_p, l_q)$ if and only if $p > q$.

For L_p spaces the situation is:

1.8. Proposition.

a) If $2 \leq p < \infty$ then $\text{id}(L_p) \subseteq W_2$.

b) If $1 < p < 2$ then $\text{id}(L_p) \subseteq W_\rho^\ast$.

Proof. Part a) can be obtained by using the Kadec-Pelczynski alternative: every normalized weakly null sequence in L_p has a subsequence equivalent either to the unit vector basis of l_p or the unit vector basis of l_2.

Part b) follows from a standard duality argument. If (x_n) is a normalized weakly null sequence in L_p and (x_k) is a basic sub-sequence of (x_n), consider a bounded sequence (y_i) of biorthogonal functionals in L_{p^\ast}, and (again) the Kadec-Pelczynski alternative.

1.9. Examples. (See [21] for details). We shall abbreviate $id(X) \subseteq C_p$ (resp. $id(X) \subseteq W_p$) by saying $X \subseteq C_p$ (resp. $X \subseteq W_p$).

a) If $1 \leq p < \infty$, $l_p \subseteq C_r$ for $1 \leq r < p^\ast$, and $l_p \subseteq W_\rho^\ast$ for $1 < p < \infty$ (see (1.4) and (1.7)).
b) If $1 \leq p < \infty$, $L_p(\mu) \in C_r$ for $r < \min(2, p^*)$. If $1 < p < \infty$, $L_p(\mu) \in W_r$ for $r = \max(2, p^*)$ (see (1.8) and (1.6)).

c) Tsirelson's space T is such that $T \in C_p$ for all $p \neq \infty$ (see [7]).

d) Tsirelson's dual space T^* is such that $T^* \in W_p$ for all $p > 1$ (see [7]).

e) Super-reflexive spaces belong to some class W_p and, consequently, to some class C_q (see [6]).

f) If $X, l_* \in W_p$ then so does $l_*(X)$ (see [8]).

It is well-known [12] that every operator T from $C(K, X)$ to Y has a finitely additive representing measure m of bounded semi-variation, defined on the Borel σ-field Σ of K and with values in $\mathcal{F}(X, Y^{**})$, in such a way that

$$T(f) = \int f dm, \quad (f \in C(K, X)).$$

If $m : Bo(K) \rightarrow \mathcal{F}(X, Y)$ is a finitely additive measure, we shall denote by $|m|$ its semi-variation. One says that $|m|$ is continuous at \emptyset if it has a control measure: a countably additive positive measure λ on $Bo(K)$ such that

$$\lim_{\lambda(A) \to 0} |m|(A) = 0.$$

1.10. Proposition. When $T \in W(C(K, X), Y)$, its associated representing measure m is countably additive and verifies the following two conditions:

a) $|m|$ is continuous at \emptyset, and

b) for each $A \in Bo(K)$, $m(A) \in W(X, Y)$.

Thus, it seems natural to ask which properties pass from T to m and vice versa.
2. OPERATORS AND MEASURES

By mimicry of the proofs made in [3], [4] and [20] for the cases $p=1, \infty$ one can easily obtain:

2.1. Proposition. Let $T \in \mathcal{C}_p(C(K,X),Y)$, and let m its representing measure. Then:

a) $|m|$ is continuous at \emptyset, and

b) for each $A \in \mathcal{B}_0(K)$, $m(A) \in C_p(X,Y)$.

Nevertheless, these two conditions a) and b) do not characterize C_p operators. In [1], there is shown an operator T from $C([0,1],c_0)$ to c_0 which is not in C_1 but is such that its representing measure m has continuous semi-variation at \emptyset, and $m(A)$ is a compact operator for any Borel set $A \subset [0,1]$.

2.2. Proposition. Let $T \in \mathcal{L}(C(K,X),Y)$ have a representing measure m satisfying:

a) $|m|$ is continuous at \emptyset and admits a discrete control measure, and

b) for each $A \in \mathcal{B}_0(K)$, $m(A) \in C_p(X,Y)$.

Then $T \in \mathcal{C}_p(X,Y)$.

Since every Radon measure over a dispersed compact set is discrete (see [16, §2]), it follows that:

2.3. Corollary. If K is dispersed and $T \in \mathcal{L}(C(K,X),Y)$ is such that its representing measure m satisfies:

a) $|m|$ is continuous at \emptyset, and

b) for each $A \in \mathcal{B}_0(K)$, $m(A) \in C_p(X,Y)$,

then $T \in \mathcal{C}_p(X,Y)$.
Corollary (2.3) asserts that (2.1) is an equivalence when \(K \) is dispersed. We can also expect an equivalence when some condition is imposed on \(X \).

2.4. Proposition. Let \(1 \leq p \leq \infty \). The following are equivalent:

a) \(\text{id}(X) \in C_p \).

b) Given any compact space \(K \) and any Banach space \(Y \), an operator \(T \in C_p(\mathcal{C}(K,X),Y) \) if and only if its representing measure satisfies

i) \(|m| \) is continuous at \(\emptyset \), and

ii) for each \(A \in \mathcal{B}_0(K) \), \(m(A) \in C_p \).

Concerning the dual scale of weakly-\(p \)-compact operators, we have:

2.5. Lemma. Let \(T \in \mathcal{L}(\mathcal{C}(K,X),Y) \) and \(p \geq 1 \). The following are equivalent (\(\hat{T} \) is the restriction to \(\mathcal{B}(\Sigma,X) \) of the operator \(T^{**} \)):

a) \(T \in W_p(\mathcal{C}(K,X),Y) \), \(\hat{T} \in W_p(\mathcal{B}(\Sigma,X),Y) \), c) \(T^{**} \in W_p(\mathcal{C}(K,X)^{**},Y) \).

Proof. Since \(T \in W(A,B) \) if and only if \(T^* \) (or any of its iterated duals) is weak*-to-weak continuous, and the unit ball of \(A \) is weak*-dense in the unit ball of \(A^{**} \), we have:

\[
T^{**}(B_A) = T^{**}(\overline{B_A^{\text{weak}^*}}) \subseteq \overline{T(B_A)}
\]

from which the result follows.

That immediately gives:

2.6. Proposition. Let \(T \in W_p(\mathcal{C}(K,X),Y) \), \(p \geq 1 \). Its associated measure verifies:
50 Jesús M.F. Castillo and Fernando Sánchez

a) $|m|$ is continuous at \emptyset, and
b) for each $A \in \mathcal{B}(K)$, $m(A) \in W_p(X,Y)$.

The converse is not true; see the comments after (2.1).

3. DUNFORD-PETTIS-LIKE PROPERTIES

A Banach space X is said to have the Dunford-Pettis property if any weakly compact operator $T:X \rightarrow Y$ transforms weakly compact sets of X into norm compact sets of Y. This property can be described by means of the inclusion $W(X,Y) \subseteq C_p(X,Y)$. We can weaken this requirement in the following manner:

3.1. Definition. Let $1 \leq p \leq \infty$. We shall say that a Banach space X has the Dunford-Pettis property of order p (in short DPP_p) if the inclusion $W(X,Y) \subseteq C_p(X,Y)$ holds for any Banach space Y.

Obviously DPP_p implies DPP_q when $q < p$. Also, $DPP = DPP_\infty$ and every Banach space has DPP_1. It follows from the definition that if $id(X) \in C_p$ then X has DPP_p, and that if $id(X) \in W_p$ then X does not have DPP_p. The following result contains analytical and geometrical characterizations of the DPP_p.

3.2. Proposition. For a given Banach space X, the following are equivalent:

a) X has DPP_p ($1 \leq p \leq \infty$).

b) If (x_n) is a weakly-p-summable sequence of X and (x_n^*) is weakly null in X^* then $(x_n^* x_n) \rightarrow 0$.

c) Every weakly compact operator $T:X \rightarrow Y$ transforms weakly-p-compact sets of X into norm compact sets of Y.
Proof. The proof of the equivalence between (a) and (b) is obtained as in [21]. We prove the equivalence of (a) and (c).

\((c) \Rightarrow (a)\): Consider \(T : X \to Y\) a weakly compact operator, and \((x_n)\) a weakly-\(p\)-summable sequence in \(X\). We form the set:

\[
\text{conv}_p((x_n)) = \{ \sum_{n=1}^\infty \lambda_n x_n : \lambda_n^p \leq 1 \}
\]

which we shall refer to as the \(p^*\)-convex hull of \((x_n)\). Clearly, \(\text{conv}_p((x_n))\), the continuous image by the natural operator associated to \((x_n)\) of the unit ball of \(l_{p^*}\), is a weakly-\(p\)-compact set. Since \(T \in C_p\) and \(l_{p^*} \in W_{p^*}\), \(T(\text{conv}_p((x_n)))\) is compact, and \((Tx_n)\) is norm-null.

\((a) \Rightarrow (c)\): If \(A\) is a weakly-\(p\)-compact set of \(X\), then for each bounded sequence \((z_m)\) of \(A\) there is a point \(z \in A\), and a sub-sequence \((z_{m_k})\), such that \((z_{m_k} - z)\) is weakly-\(p\)-summable. We set \((x_n) = (z_{m_k} - z)\), and apply to this sequence the preceding argument, to conclude that \((Tx_n)\) admits a norm null sub-sequence.

3.3. Examples. The following examples are immediate after (1.9). In fact, these results give the optimum values of \(p\).

a) \(C(K)\) and \(L_1\) have the \(DPP\), and therefore the \(DPP_p\) for all \(p\).

b) If \(1 < r < \infty\), \(l_r\) has the \(DPP_p\) for \(p < r^*\).

c) If \(1 < r < \infty\), \(L_r(y)\) has the \(DPP_p\) for \(p < \min(2, r^*)\).

d) Tsirelson's space \(T\) has \(DPP_p\) for all \(p < \infty\). However, since \(T\) is reflexive, it does not have \(DPP\).

e) Tsirelson's dual space \(T^*\) does not have \(DPP_p\) for any \(p > 1\).

Coming back to continuous vector function spaces, we have:
3.4. **Proposition.** If \(\text{id}(X) \in C_p \) then, for any compact \(K \), \(C(K,X) \) has \(DPP_p \).

Proof. Let \(T \in \mathcal{W}(C(K,X),Y) \). If \((f_n) \) is a weakly-p-summable sequence in \(C(K,X) \), then for each \(t \in K \), the sequence \((f_n(t)) \) is also weakly-p-summable in \(X \), and thus it is norm null. The sequence \((Tf_n) \) is also null by [5, Th. 2.1].

3.5. **Corollary.** Given any compact space \(K \) and \(1 < p < \infty \), \(C(K,l_p) \) has \(DPP_r \) for all \(r < p^* \); it does not have \(DPP_{p^*} \).

A "limit case" is provided by Tsirelson's spaces (compare this result with (3.13)):

3.6. **Corollary.** If \(T \) denotes Tsirelson's space then, given any compact space \(K \) and \(1 < p < \infty \), \(C(K,T) \) has \(DPP_p \) but not \(DPP \).

Now, we see what happens if we replace the condition "\(\text{id}(X) \in C_p \)" by the weaker "\(X \text{ has the } DPP_p \)."

3.7. **Example.** Talagrand’s construction of a Banach space \(X \) having \(DPP \) but such that \(C(K,X) \) does not have \(DPP \) (see [22]), can be modified in such a form that we obtain Banach spaces \(T_p \) \((p > 1) \) having \(DPP \), and such that \(C(K,T_p) \) does not have \(DPP_p \). Talagrand’s original example corresponds to \(T_2 \).

What can be said about \(C(K,X) \) when \(X \) simply has \(DPP_p \)? The following theory was developed in [4] and [2] for \(DPP \).

3.8. **Definition.** An operator \(T : C(K,X) \to Y \), whose associated measure \(m \) has continuous semi-variation at \(\emptyset \), is said to be almost-\(C_p \) if, for each weakly-p-summable sequence \((x_n) \) of \(X \) and each bounded sequence \((\phi_n) \) of \(C(K) \), the sequence \(T(\phi_n x_n) \) converges to 0 in \(Y \). Obviously, \(C_p \)-operators are almost-\(C_p \).
3.9. **Theorem.** The following are equivalent:

a) X has DPP$_p$.

b) For each compact space K, every weakly compact operator $T:C(K,X) \to Y$ is almost-C$_p$.

c) Every weakly compact operator $T:C([0,1],X) \to Y$ is almost-C$_p$.

d) Every weakly compact operator $T:C([0,1],X) \to c_0$ is almost-C$_p$.

(The proof is exactly as [2, Th. 5]).

3.10. **Corollary** ([10, [13]). Let $1 \leq p \leq \infty$. For a dispersed compact space K, the following are equivalent:

a) $C(K,X)$ has DPP$_p$.

b) X has DPP$_p$.

Proof. Implication a)\Rightarrowb) follows from (3.9). Conversely, if $T \in W(C(K,X),Y)$ with representing measure m, for each Borel set $A \subset K$, $m(A) \in W(X,Y) \subset C_p(X,Y)$, since X has DPP$_p$. Applying (2.3), we obtain $T \in C_p$.

Concerning the scales W_p, Diestel and Seifert proved in [11] that weakly compact operators defined on $C(K)$ spaces are Banach-Saks operators. Recall that an operator $T \in \mathcal{S}(X,Y)$ is said to be Banach-Saks (in short $T \in BS$) if any bounded sequence (x_n) of X admits a sub-sequence (x_{m_k}) such that (Tx_{m_k}) has norm-convergent arithmetic means.

Núñez [18] extended this result to $C(K,X)$ spaces showing that, when X is super-reflexive, then weakly compact operators defined on $C(K,X)$ are Banach-Saks. In [9], it is shown a vector measure whose range is not a weakly-p-compact set for any p. That example provides a weakly compact operator T, defined on a certain $C(K)$ space, which, for every p, does not belong to W_p, showing that, in general, $X \in W_p$ does not imply
W(C(K,X),Y)⊂W_p(C(K,X),Y), and therefore, that in some sense, the result of Diestel and Seifert cannot be improved.

Despite that negative result, when K is a dispersed compact space, some positive results can be obtained:

3.11. Proposition. If X∈W_p then W(c_0(X),Y)⊂W_p(c_0(X),Y).

Proof. Let T∈W(c_0(X),Y) and let (f_n) be a bounded sequence in c_0(X). Let ε>0. For each n∈N, a number p_n exists so that ∥f_n(k)∥≤ε2^n for k≥p_n.

We write f_n = f_n^d + f_n^l, where

f_n^l = (f_n(1),...,f_n(p_n-1),0,0,...)

and

f_n^d = (0,0,...,0,f_n(p_n),f_n+1,...).

Since ∥f_n^d∥→0, it is enough to see that T(f_n^l) admits a weakly-p-convergent sub-sequence. For each k∈N, there exists q_k such that w_p((f_n^l(k)-x_k)|_{n≤q_k})≤λ (the constant λ can be chosen uniformly [15]).

We determine inductively a sequence of indices (q_{δn}) as follows:

q_{δ0} = q_1 and q_{δ(n+1)} = max{q_k : k≤p(q_{δ(n)})}

so that p(q_{δ(n+1)})>p(q_{δ(n)}), and consider the sub-sequence f_n^l = f_n^{q_{δn}}.

We now write f_n^l = s_n + t_n where

s_n = (0,0,0,...,f_n(p_{q_1}),...f_n(p_{q_{δn}}),0,0,...),

t_n = (0,0,0,...,f_n(p_{q_1}),...f_n(p_{q_{δn}}),0,0,...),

so that it is the continuous image of a block basic sequence constructed against the canonical basis of c_0. We see that, passing to a sub-sequence if necessary, (T_t_n) converges to 0.
The sequence
\[
(z_n) = \begin{cases}
 z_n(k) = f_n(k) & \text{if } k \leq p(q_{n(i+1)}), \\
 z_n(k) = 0 & \text{otherwise},
\end{cases}
\]
however, is the continuous image of (a part of) the summing basis \((e_1 + \ldots + e_n)_n\) of \(c_0\).

If we set \(x = (x_1, x_2, x_3, \ldots) \in l_p(X)\), we see, passing again to a subsequence if necessary, that \(\|Tz_n - T**x\| \leq 2^n\).

Finally, if \((\xi_n)\) is a finite sequence in the unit ball of \(l_p\), then
\[
\|\sum \xi_n (Tz_n - T**x)\| \leq \|\sum \xi_n (Tz_n - Tz_n + Tz_n - T**x)\|
\leq \|T\| \cdot \|\sum \xi_n (z_n - z_n)\| + 1 \leq \lambda \cdot |T| + 1,
\]
thus finishing the proof.

Remark. If the choice of indices indicated in the proof is not possible because the sequence \((p_n)\) does not go to infinity, then we would be working in a finite product space \(X^\omega\); if it is because the sequence of \(q_n\) stops at \(q\), then we shall follow the same reasoning as in the last part with the sub-sequence, \(f_{q^0}, f_{q^0+1}, \ldots\)

3.12. Theorem

Let \(K\) be a dispersed compact space and \(X \in W_p\). Then:
\[
W(C(K, X), Y) \subseteq W_p(C(K, X), Y).
\]
Proof. Let \(T \in W(C(K, X), Y)\) and let \((f_n)\) be a bounded sequence in \(C(K, X)\). By a standard argument we can assume \(K\) to be countable, \(K = \{t_1, t_2, \ldots\}\). Since \(m\) (the associated measure of \(T\)) has continuous semi-
variation at \emptyset, a p_n exists for each $n \in \mathbb{N}$ such that, if we set $B_k=\{t_j; j \geq k\}$, then $|m| (B_k) \leq 2^n$.

Once more we write $f_n = f_n^d + f_n^i$ where f_n^d converges to 0 and f_n^i is eventually zero. Since f_n^i is a bounded sequence in a space isomorphic to some $c_0(\mathbb{N},X)$, the proof of (3.11) applies.

3.13. Corollary. If K is a dispersed compact space and T^* denotes Tsirelson's dual space, then $W(C(K),T^*), Y) \subset W_p(C(K),T^*), Y)$ for all $p>1$.

A sufficient condition on X which guarantees the inclusion $W(C(K),X) \subset W_p(C(K),X)$ is given by:

3.14. Theorem. If X does not contain c_0 finitely represented, then

$$W(C(K),X) \subset W_2(C(K),X).$$

Proof. If X does not contain c_0 finitely represented, then there is a $p>1$ such that $\mathcal{S}(C(K),X) = W(C(K),X) \subset \Pi_p(C(K),X)$ by [19]. But each p-summing operator sub-factorizes through an L_p-space, which gives $\Pi_p \subset W_2$ when $p \geq 2$, and thus for all p.

The hypothesis is not necessary: just consider Tsirelson's space T^*.

4. FINAL REMARKS AND FURTHER QUESTIONS

Results (3.12) and (3.14) suggest the following problems:

Problem K. Characterize the compacts K such that for any Banach space X

$$W(C(K),X) \subset W_2(C(K),X).$$

Problem X. Characterize those Banach spaces X such that for any compact K
Notice that the hypothesis of (3.14) is not necessary: if K is dispersed, then $W(C(K), X) \subset W_p(C(K), X)$ for all $p > 1$ and T is not, for any $p < \infty$, of cotype p.

An application could be the following conjecture, essentially due to Drewnowski: Is it true that $\mathcal{L}(l_p, X) = K(l_p, X)$? One implication is clear. To see the other, notice that $X \in C_2$ and $\mathcal{L}(l_p, X) = K(l_p, X)$ are equivalent. Since $C_2 \circ W_2 = K$, and since $X \in C_2$ implies $\mathcal{L}(l_p, X) = W(l_p, X)$, the question is whether a) Banach spaces $X \in C_2$ satisfy affirmatively Problem X, or b) the Stone-Cech compactification of $N \cap \mathbb{N}$, satisfies affirmatively Problem K.

Another unsolved question about the relationships between T and m is the following: Is it true that if K is a dispersed compact, and, for every Borel set A, the operator $m(A) \in W$, then $T \in W$?

The example in [9] mentioned before (3.11) shows that the hypothesis "K dispersed" cannot be removed.

Besides this, Núñez proved in [18] that if $T: C(K, X) \to Y$, K is dispersed and, for every Borel set A, the operator $m(A) \in BS$, then $T \in BS$. The connection with Núñez's result is the following:

Obviously property W_p implies the Banach-Saks property. Moreover, for $p > 1$, the p-Banach-Saks property is defined as follows: A Banach space X is said to have the p-Banach-Saks property when each bounded sequence (x_n) admits a sub-sequence (x_{n_k}) and a point x such that $(x_{n_k} - x)$ is a p-Banach-Saks sequence, i.e., satisfies an estimate of the form

$$\left| \sum_{k=1}^n x_k \right| \leq C n^{1/p}$$

for some constant $C > 0$ and all $n \in \mathbb{N}$. It is also clear that property W_p implies the p^*-Banach-Saks property. In [6] can be seen a proof that, conversely, the p^*-Banach-Saks property implies, for all $r > p$, the property W_r. Therefore, what this question is looking for is the extension of Núñez's result to the scale of p-Banach-Saks properties.
References

Dunford-Pettis-like Properties of Continuous...