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ABSTRACT

The modernization of the Global Positioning System (GPS) and the advent of the European Project
Galileo will lead to a multifrequency Global Navigation Satellite System (GNSS). Single GNSS
receiver observations could be used to estimate the ionospheric bias and smoothed pseudoranges
which, in turn, can be exploited to better estimate the absolute position of the receiver and its clock
correction. In fact, if we consider the satellite ephemerides and satellite clock corrections as perfect
quantities (i. e. not affected by errors), the adjustment of GNSS observations is broken down into two
parts. In addition, the least squares (LS) theory leads to a feasible adjustment in two steps, where
covariance matrices can be explicitly written, studied and propagated from one step to the other, so
that, a rigorous solution is finally obtained. This paper deals with the analytic representation of the
above mentioned LS procedure and provides theoretical limits for the achievable accuracies of the
parameter estimated considering different scenarios, including modernized GPS and Galileo systems.
Furthermore, numerical tests with Galileo data simulated by GSSF (Galileo System Simulation
Facility) have been carried out.
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RESUMEN

La modernizacién del Sistema de Posicionamiento Global (GPS) y la llegada del Proyecto Europeo
Galileo, daran lugar a un Sistema de Navegacion por Satélite (GNSS) multifrecuencia. Las observacio-
nes de un unico receptor GNSS podran emplearse en la estimacion del efecto ionosférico y las pseu-
dodistancias suavizadas, las cuales, a su vez, se utilizardn en la estimacién de la posicién absoluta del
receptor y la correccidn del reloj. Considerando las efemérides de los satélites y las correcciones a los
relojes de los satélites como cantidades perfectas (i. e. no afectadas de errores), el ajuste de observa-
ciones GNSS se divide en dos partes. La teoria minimo cuadrética proporciona un ajuste en dos etapas
en el cual, las matrices de covarianza pueden escribirse explicitamente y propagarse de un paso al
siguiente, de forma que, finalmente obtenemos una solucién rigurosa. En este trabajo se muestra la
representacion analitica del procedimiento minimos cuadrados mencionado anteriormente y se propor-
cionan limites tedricos para las precisiones alcanzables en la estimacion de los pardmetros al conside-
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rar diferentes escenarios, incluyendo los sistemas GPS modernizado y Galileo. Adicionalmente, se han
llevado a cabo test numéricos con datos Galileo simulados con el simulador GSSF (Galileo System
Simulation Facility).

Palabras clave: GPS Modernizado, Galileo, efecto Ionosférico, precision tedrica.

1. INTRODUCTION

The GNSS observables depend on the satellite-receiver distance, atmospheric
effects, satellite and receiver offsets and phase ambiguities, as well as satellite and
receiver equipment delays. GNSS observations can be used to estimate the
ionsopheric bias and the user position. The main obstacle in the estimation of the
ionospheric TEC (Total Electron Content) from dual frequency GPS data is the
effect of the pseudorange electronic biases, while the carrier phase equipment
delays are absorbed by the ambiguity parameters. A pseudorange bias is present
for each of the two GPS frequencies, and the difference between them is called
differential code bias (DCB). Several authors have studied the problem of
estimating the TEC and the differential code biases. Coco et al. (1991)
represented the vertical TEC using polynomial coefficients. Three years later,
(Sardon et al. 1994) used a Kalman filtering approach to estimate the TEC and the
DCBs. At the end of 1996, CODE (Center for Orbit Determination in Europe)
began to produce daily global ionosphere maps (GIMs) using a spherical
harmonic expansion to represent the TEC (http://www.aiub.unibe.ch/ionosphere).
In 1999, (Schaer, 1999) studied the time series of the coefficients of the expansion
into spherical harmonics used to represent the TEC. (Lacy et al., 2005) presented
a procedure based on the LS approach, which implicitly takes into account these
equipment biases in the estimation of the ionospheric effect. Another method is
shown in (Portillo et al., 2008). In this paper, a Precise Point Positioning (PPP)
approach based on undifferenced multifrequency GPS observations and LS theory
is presented. This procedure will allow us to estimate the position of the station
and the inospheric bias by exploiting the presence of new frequencies in the future
GNSS context, and furthermore, analyze the formal accuracy of the different
parameters estimated. In particular, in Section 2, the GNSS observation equations
in a multifrequency scenario are described; in Section 3, our method is
introduced. In Section 4, the numerical tests regarding the limits of achievable
formal accuracies are shown. Finally, results coming from simulated data by
GSSF are studied.

2. THE FUTURE GNSS SCENARIO

The modernization of the GPS and the advent of the Galileo system will lead to a
multifrequency GNSS system improving the capability of the precise positioning
applications. Details of the satellite constellation and frequencies for modernized
GPS and future Galileo can be found in (Simsky et al, 2006). Table 1 summarizes
the GPS and Galileo signals frequencies.
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Table 1.- Basic GPS (L) and Galileo (E) signal frequencies.

Carrier Frecuency (MHz)
L1 1575.42
L2 1227.6
L5 1176.45
E2-L1-El 1575.42
E5b 1207.14
E5a 1176.14

In 1991, Euler and Goad (1991) assumed some approximations in a general
model of GPS observables in order to express them in a more suitable form. Taking
these simplifications into account and omitting the indices related to receiver and
satellite, the mathematical model of GNSS carrier phase and pseudorange
observables specific to a receiver and a satellite (i.e., for undifferenced data) for an
epoch is the following:

Py(t) =p(t) + K, J,(1) + vp (1) (1)
L, (1) =p(t)- K;; J,(1) + By + v, (1)

Where k = 1, 2, 3, f, being the frequencies shown in Table 1. The symbols P, and
L, are the code pseudorange measurements and the carrier phase observations
expressed in distance units at frequency f,, respectively; K, = (f 1/f )2; vpand v,
represent the measurement noise of code pseudoranges and phase obvservations,
respectively. All parameters in the above equations are generally biased. The term is
interpreted as the distance travelled by the signal and is biased by clock terms and
tropospheric delay effect. J; is the ionospheric group delay at the f; frequency. The
term B, is formed by joining the non-zero initial phase and the integer carrier phase
ambiguity. That is to say that the initial carrier phase ambiguity at frequency f, is
biased by initialization constants and generally is not integer. Furthermore, each of
the equations in (1) is known to be biased by a term known as equipment delay,
which is constant for a short period of time and represents the travel time of the
signal through the circuitries of the receiver and satellite. The multipath effect is
ignored in equations (1).

The presence of new frequencies will imply that many different frequency
combinations will be able to be generated. If we consider phase observations
expressed as cycle units, a general linear combination (LC) of phase observations in
a triple frequency scenario can be written as

(DLC:mICD]+m2CDZ+m3CD3 2)
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Table 2.- GPS and Galileo widelane linear combinations

System LC m, m, m; Wavelength (m)
EWL 0 1 -1 5.81
GPS WL 1 -1 0 0.862
ML 1 0 -1 0.751
EWL 0 1 -1 9.768
Galileo WL 1 -1 0 0.814
ML 1 0 -1 0.751

where @, with k = 1, 2, 3 represent phase observations (in cycles) at the frequency
Ji- The coefficients of the corresponding linear combination and their wavelengths
are shown in Table 2. In this table, EWL, WL and ML stand for extrawidelane,
widelane and mediumlane combination (Zhang, 2005). These linear combinations
represent the generalization of the traditional widelane combination of dual
frequency GPS phase observations.

3. AMETHOD FOR THE POSITION AND IONOSPHERIC BIAS
ESTIMATION

In our method, the LS theory is used twice in order to obtain the receiver
position. In a first step, the LS theory is used to estimate smoothed pseudoranges,
ionospheric effect, and ambiguity parameters. In the second one, the LS theory is
applied to estimate the receiver clock offset and the station position.

In the near future, GNSS triple frequency receivers will be available. In this case,
the mathematical model of GNSS code and phase observations can be written as:

P()=A,C(1)+vp(1) (3)
L()=AL ()+B+y (1)

Where C () is a vector representing the smoothed pseudorange (satellite-receiver
pseudorange obtained by combining code and phase observation) and ionospheric
delay at each epoch 7; B is the vector of ambiguity biases and v,, v, are the
measurement errors.

The observation vector at any epoch ¢ is given by:

Yo (1) = (P(1), L(1))* = (P,(1), P,(1), P5(t), L;(1), Ly(1), Ly(1))* )

The stochastic model at any epoch ¢ is:
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o 0 ) )

C= 00(0 I

Where Q,, is the cofactor matrix relative to the code measurements at any given
epoch 7, I; is the 3 x 3 identity matrix and 0’5 represents the a priori variance. By
hypothesis, we will consider that the a priori covariance matrix of the observations
is diagonal, and the standard deviations for the carrier phase and pseudorange
observations are in the order of millimeters and decimeters, respectively. In spite of
this hypothesis, it is important to remember that some receivers filter the
observations in order to reduce the measurement noise; this procedure cause
correlations between the observables (Bona, 2000).

The unknown parameters are:

1. Ambiguity biases at first, second and third frequency. We will assume absence
of cycle slips. Then, ambiguity biases should be constant over our observation
period. The LS estimate of these parameters will be denoted as B.

2. Smoothed pseudoranges and ionospheric delays at each epoch twitht =1, 1,, ..., 1,.

The design matrix A is given by:

A, 0 0 0
A, 00 1
0 A, 0 0
A=l o 4, o 1 (6)
0 0 A, 0
0 0 A, I
where
1
A=|1 K, )
Ik,
and
-1
Ay, =1 -k, ®)
I -k
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with K, = (f, /f,)? and K 5 = (f, / f;)*.
Applying the LS theory, the LS solution we are looking for is given by

(1))
= Y (1)
=1 (1)
v gl ay! At ol [H7 < 9)
£ (in)
E Yo (tn)
-1
ATOF A, +AS A, 0 0 .. 0 A3
0 ATOJ A +ATA, O .. 0 A}
0 0 0 ... ATQLA, +ATA, A
A, A, Ay .. A, nl;

/ ATQ} P(1) + AT L(1)
ATO Pty + A L(t,

ATQ{ P(1,) + Af L(1,)
S L(t)
li

e —

where Q is the cofactor matrix.
Now we need to know the expression of the inverse of the normal matrix. We can

write

N 0 0 .. 0 A}
0 N 0 .. 0 A%
N_= : : : : (10)
0 0 0 N A%
A, A, A, A, nl,
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with N =AY O}/ A, + AA, =M + A} A,; N being a 2 x 2 matrix.
The above matrix can be written as the following block matrix

_ (N E .
- E+ F ( )
where
N 0 0 0
- 0 N O 0
N=| . . (12)
0 0 0 N
A3
A3
E = : (13)
A3
and
F=nl; (14)

where n is equal to the number of epochs.
Taking into account the expression of the inverse of a block matrix (Koch, 1999),
we obtain

_, [T A

N7 =] o+ v (15)
where

y=-L(1,- AN Ay (15)

N1A3 D!

_ N1 At D1
A= 0 (a7

N1A3D!
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; — -1 A+
with D = (I; - A,N"' A7) and

r=N'®1,+LNIASDIANT ® ¢-¢* (18)

withe = (1, I, 1, ..., I) and ® representing the tensorial product.
It is important to underline that D'/ always exists, and, in fact, the inverse matrix
of Nis

N1 =M1 -MTAS (I, + A,M T AY) T A, M! (19)
Then

ANTAS = A,MTAS - A,MTAS (1 + A,MTAY) T AMTAS
(20)
= (I, + A,MTASTA,MTAY =1, - (I, + A,MT A%) !
Finally, we obtain

I;- A,NTAS = (I, + A,M T A%)! (1)

The right side of the above equation is always greater than or equal to zero, so
we can conclude that the expression of D/ is

Dl =(I,-ANTAY) T =1, + A,MT A3 (22)

Substituting (16), (17) and (18) in (9), we obtain the expression of the LS
solution. In particular, the LS estimation of the ambiguity parameter is given
by

B= TJ > D! AN (A;“ 0, P(t) + A% L(tl.)) + % D'y L(t)
1 l

=-DTANT (A Q) P+AS L)+ D' L (23)
=(D'-DTANTA}) L-D'ANTAL Q)] P

where P and L are the mean of the pseudorange and phase measurements,
respectively, over the observation period. The LS solution of the smoothed
pseudorange and ionosphere parameters at any epoch 7 is given by
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, B(1)
§(1) ==
J(1)
= (N-I + LNt as D"AZN']) (A7 O P(1) + A3 L(1)) - L N1 A3 DI = L(1)
@
= (N-I + niN-I A D! AZN'I) (A} Qi P(1) + A} L(1)) - N AS DL

t being the considered epoch and 7, the other epochs of the observation period.
Taking the covariance propagation law into account, we obtain the formal
covariance matrices of the LS estimates. In this way, the covariance matrix of the
ambiguity biases reads

Gy = 0'02% (I, - AN A% (25)

and the covariance matrix of the smoothed pseudorange and ionospheric delay
parameter at any epoch is

1

n

Cé_@ =cj (N +

NTAYDTA,NY) (26)

A more elegant way to obtain the LS solution in a dual frequency scenario was
presented in (Lacy et al. 2005).

It is important to stress that a subsequent LS estimation is necessary to obtain the
receiver position. In particular, the observation vector is formed by the smoothed
pseudoranges (24). These smoothed pseudoranges for one receiver and several
satellites can be combined to recover the receiver position. The corresponding
stochastic model is obtained from (26). This matrix is equal for every pair receiver-
satellite and it can be written as

d+a a a a
a d+a a a .
CPAPA - a a d+a a =dl, + ace @D
a a d+a

with d, ad, a € R, I, the n x n identity matrix and ¢ = (/, 1, ..., 1)*. Note that the
inverse of this matrix is known and it is given by
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N O +
¢ _d(l” d+na)g (28)

It is worth remembering that the expression (24) gives the estimation of the
ionospheric parameter at any epoch ¢, but it is biased by the term known as
equipment delay.

4. NUMERICAL TESTS

Expressions (25) and (26) give explicit expressions of the covariance
matrices. We can see that they depend on the observation time. This result
allows us to study the theoretical limits for the achievable accuracies. So let us
study the behaviour of the standard deviations of the unknowns as a function of
time. We will consider the error of the measurements uncorrelated, but we must
not forget that the results presented here could be improved with the use of a
correlated covariance matrix, especially in pseudoranges. As a consequence of
this simplification, the resulting formal accuracies are expected to be optimistic.
In order to achieve more realistic results, numerical tests with simulated data
were carried out.

The scenarios considered in our study are the following:

1. GPS only, dual and triple frequency.

2. Galileo triple frequency.

3. Galileo simulated data provided by GSSF (Galileo Simulate System Facility),
(Zimmermann, 2006).

In the two first scenarios, the noise of the phase measurements is established at
0.002 m. The standard deviations of the code observations are listed in Table 3. In
the third case, standard options of the GSSF were used to obtain Galileo triple
frequency data.

Under these assumptions, the theoretical standard deviations of the ambiguity
biases ( Op, ), smoothed pseudoranges (0,) and ionospheric bias (0;) have been
studied. In the first scenario, the dual frequency results are based on the current GPS
L1 and L2 frequencies and for the triple frequency results the future GPS LS5
frequency is added. In Fig. 1 the behaviour of op, is shown. The same results are

Table 3.- Standard deviation of code observations (meters)

Standard precision
L1 0.30 E1/E2 0.15
L2 0.30 E5b 0.10
L5 0.10 E5a 0.10
142 Fisica de la Tierra
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obtained for Op, and 0y 1n a dual frequency scenario. In a triple frequency
hypothesis 0; = 0 and their values are very close to those obtained for the dual
frequency scenario. The best results indicate that the standard deviation drops to 0.4
cycles after 200 epochs. These results are not small enough for an unambiguous
estimation of B,. Therefore, we are looking into the standard deviation of the
widelane ambiguities.

Fig. 2 shows the uncertainty of the all possible GPS widelane ambiguity bias
(Table 2). Better results are obtained when a third frequency is assumed. The
longer the wavelength, the smaller the standard deviation, although the
difference between the standard deviation of the mediumlane and widelane
ambiguities is very small. For the widelane combination formed by L2 and L5,
the standard deviation drops below 0.01 cycles after 10 epochs. It is clear that
the new widelane linear combinations will be very useful for detecting and
repairing cycle slips. It is important to note that the results relative to a scenario
with two GPS frequencies are consistent with those obtained in (Euler and
Goad, 1991).

Now, we can study the covariance matrix (26). This matrix can be written as
a constant part plus another part which depends on time. Under the above
hypothesis, when n — +o, only the constant part is left. If we consider a GPS
dual frequency scenario, we see that if n — +o, 0, = 0.0057 m and
o; = 0.0043 m. If a third GPS frequency is assumed, when n — +oo,
Oy =~ 0.0051 m and 0j = 0.0033 m. In all cases, if n = +o0, the formal accuracies

3 triple frequency (B2, B3)
triple frequency (B1)
dual frequency (B1, B2)

2.5
2
g
\% 1.5
1
0.5
0
0 100 200 300 400 500 600 700 800

(epochs)
Figure 1.- Standard deviations of ambiguity biases. GPS-only scenario.
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0.08

widelane combination
extrawidelane combination
mediumlane combination

0.07
0.06
0.05

0.04

(cycles)

0.03
0.02

0.01

0 100 200 300 400 500 600 700 800
(epochs)

Figure 2.- Standard deviations of widelane ambiguity biases. GPS-only scenario.

0.35 o
Galileo triple frequency
GPS triple frequency
GPS double frequency
0.3
0.25
~ 02
2
g
~ 0.15
0.1
0.05
0
0 100 200 300 400 500 600 700 800
(epochs)
Figure 3.- Standard deviations of smoothed pseudoranges.
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are less than 1 cm and no significant differences have been found when a third
frequency is introduced. The general behaviour of o, is shown in Fig. 3. Better
results are reached when a third frequency is assumed. In particular, o, is better
than 10 cm after 80 epochs in a dual frequency scenario and o, is better than 10
cm after 50 epochs in a triple frequency scenario. When the CGalileo scenario is
considered, the results improve as we will analyze later. In Fig. 4, it can be seen
that the formal accuracy of the ionosphere parameter is better than 10 cm after
50 epochs in a dual frequency scenario and after 20 epochs when a third GPS
frequency is assumed.

In a Galileo scenario, regarding the standard deviation of the ambiguity
biases, the results are very similar to those obtained in a GPS scenario. It is to
say that the standard deviation is not small enough for an unambiguous
estimation of. The corresponding figures are not included here to avoid a great
number of similar figures. Fig. 5 shows the standard deviation of all possible
Galileo widelane ambiguity bias (Table 2). Better results are obtained when a
third frequency is assumed. As in the GPS scenario, we notice that the longer the
wavelength, the smaller the standard deviation. Comparing with GPS-only
scenario, we can say that the formal accuracy of Galileo widelane combinations
is greater than the relative to GPS widelane combinations. Both, GPS and
Galileo widelane combinations will be very useful for detecting and correcting
cycle slips. It is important to remember that the LS approach described in Section
3 could also be applied to differenced observations, e. g. single and double

0.25 . —
x Galileo triple frequency
« GPS triple frequency
* GPS double frequency
02"
0.15F ]
~
wa
Y
Q
8
g *
~— ¥
0.1+ N
Lo*
*
*
% *x
. *y
. H,
0.05} =
. ok
*:
o .. s
Xy Tt
Moo TTTreeeeii,
XxxxxxXXX ........................
TR
XXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
L L L L L

OO 100 200 300 400 500 600 700 800
(epochs)

Figure 4.- Standard deviations of ionosphere bias.
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difference data. From the above results, it is expected that these new widelane
combinations improve and speed up the capability of solving integer ambiguity
parameters, mainly by fixing them with a cascading method. It is important to
remember that, if we assume an integrated GPS and Galileo scenario, the
ambiguities of a mixed pair of double differences are in general not integer, due
to different clock characteristics.

Regarding pseudoranges and ionospheric parameters, o, is close to 10 cm after
10 epochs (Fig. 3) and oj is close to 5 cm after 10 epocﬁs (Fig. 4). Comparing
Galileo and GPS scenarios, the standard deviation of all parameters considered is, in
general, much smaller in the Galileo system.

The results presented here, mainly depend on the standard deviation of the
pseudoranges. As there is a discrepancy about these values (Zhang, 2003),
(Simsky et al, 2006), Galileo data coming from GSSF with standard options are
studied. The Raw Data Generation capability of GSSF is used in order to
generate Galileo observations acquired by Galileo Sensor Stations,
(Zimmermann, 2006). In our case, the options used to simulate the data set are
the following: The total environment delay of the signal from its time of
emission to time of reception is calculated by adding free space delay,
ionospheric delay and tropospheric delay for each broadcasted frequency. The
free space delay simulates the delay due to free space of a signal propagating
from a transmitter to a receiver, with eccentricity and “Sagnac” effects, which
individually add an offset to ideal free space delay. The ionospheric delay uses

0.04
Widelane combination
Extrawidelane combination
Mediumlane combination

0.035
0.03
0.025

0.02

(cycles)

0.015
0.01

0.005
0 100 200 300 400 500 600 700 800
(epochs)

Figure 5.- Standard deviations of widelane ambiguity biases. Galileo scenario.

146 Fisica de la Tierra
2008, 20 133-150



M.C. de Lacy, A.J. Gil, G. Rodriguez-Caderot and B. Moreno A Method to Estimate the lonosperic...

ITU-R NeQuick to calculate the total electron content (TEC). The TEC, as
provided by the ITU-R NeQuick model, is a function of time of day, user
location, satellite elevation angle, season and further environmental parameters.
The tropospheric model computes tropospheric delay as the sum of dry and wet
tropospheric zenith delays, mapped to the satellite elevation angle. The
tropospheric delay algorithm is based on the Hopfield model. The Galileo
Sensor Station (GSS) is a derivative of the static user receiver model used
within GSSF. It consists of a receiver front-end model, which receives the
Galileo and GPS signals from the visible satellites and computes the
observations to be included into a RINEX file. The pseudorange values are
simulated by adding measurement errors to the range (time) information
provided by the environment model. These measurement errors are a function of
noise, multipath effects and group delay (interfrequency bias). The total signal
to noise ratio will be computed from received power, signal propagation noise,
intrinsic receiver noise, and interference noise. These options have been used to
simulate 1-second Galileo data from 12h to 16h of 7th June 2007 at a point of
known coordinates (Fig. 6). Simulated data have been used to check the results
obtained from the analysis of the formal accuracy.

From Figs. 7 and 8, the STD obtained from real dual frequency GPS are slightly
better than those provided by Galileo simulated data. It is probably linked to the
characteristics of GSSF and the high noise of Galileo pseudorange data. In the
future, the method will be tested with GIOVE-A data.

0.2
0.15
0.1

0.05

(cycles)

-0.05
-0.1
-0.15
-0.2

_0'250 200 400 600 800 1000 1200 1400

(epochs)
Figure 6.- Galileo simulated data provided by GSSF.
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0.18
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0.12

0.1

0.08

0.06
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0

Pseudoranges
Tonospheric effect
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Figure 7.- Standard deviations of smoothed pseudoranges and ionospheric biases. Galileo scenario.
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Figure 8.- Standard deviations of pseudoranges and ionospheric bias. Real GPS data.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, an LS approach using undifferenced GNSS data to single point
positioning is presented. Furthermore, this procedure allows us to estimate the
ionospheric bias at any epoch. The covariance matrices of the LS adjustment are
explicitly obtained and this has allowed us to study the theoretical limits of the
achievable accuracy. The formal accuracies of ambiguity bias, smoothed
pseudorange and ionospheric bias are studied under different dual and triple
frequency scenarios. The procedure can be used in a multifrequency scenario. In
this work, it has been used in different contexts: dual and triple frequency GPS and
Galileo systems. This fact has allowed us to analyze the impact of new linear
combinations of phase observations. In general, the Galileo solution is better than
the GPS one and the results improve when a third frequency is assumed. In
particular, the standard deviation of the smoothed pseudoranges is better than 10 cm
after 50 epochs in a triple frequency GPS scenario, and is close to 10 cm after 10
epochs in a triple frequency Galileo scenario.

Furthermore, the results stemming from simulated data were compared to the
results obtained from real dual frequency. GPS results are slightly better than those
provided by Galileo simulated data. It is probably linked to the characteristics of
GSSF and the high noise of Galileo pseudorange data. In the future, the method will
be tested with GIOVE-A data.

The LS approach presented in this work could be also applied to double
differenced observations.

The work presented is framed inside the research Project ESP2005-01997 ‘Un
estudio del impacto de la modernizacién del GPS y del proyecto europeo Galileo en
las técnicas de posicionamiento de precision’ funded by Ministerio de Educacion y
Ciencia.
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